in

Growth-related trophic changes of Thunnus thynnus as evidenced by stable nitrogen isotopic values in the first dorsal spine

  • 1.

    Jessop, B. M., Shiao, J., Iizuka, Y. & Tzeng, W. Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry. 233, 217–229 (2002).

  • 2.

    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).

    CAS  Google Scholar 

  • 3.

    Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472 (2001).

    ADS  Article  Google Scholar 

  • 4.

    Zanden, H. B. V., Bjorndal, K. A., Reich, K. J. & Bolten, A. B. Individual specialists in a generalist population: Results from a long-term stable isotope series. Biol. Lett. 6, 711–714 (2010).

    Article  Google Scholar 

  • 5.

    Avens, L. et al. Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead sea turtle oceanic stage duration and growth dynamics. Mar. Ecol. Prog. Ser. 491, 235–251 (2013).

    ADS  Article  Google Scholar 

  • 6.

    Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One 7 (2012).

  • 7.

    Deniro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1980).

    ADS  Article  Google Scholar 

  • 8.

    Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. in Stable isotopes in ecology and environmental science. (Blackwell Publishing, Boston, MA., 2007).

  • 9.

    Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).

    Article  Google Scholar 

  • 10.

    Chisholm, B. S., Nelson, D. E., Hobson, K. A., Schwarcz, H. P. & Knyf, M. Carbon isotope measurement techniques for bone collagen. J. Archaeol. Sci. 10, 355–360 (1983).

    Article  Google Scholar 

  • 11.

    Jørkov, M. L. S., Heinemeier, J. & Lynnerup, N. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. J. Archaeol. Sci. 34, 1824–1829 (2007).

    Article  Google Scholar 

  • 12.

    Snover, M. L., Hohn, A. A., Crowder, L. B. & Macko, S. A. Combining stable isotopes and skeletal growth marks to detect habitat shifts in juvenile loggerhead sea turtles Caretta caretta. Endanger. Species Res. 13, 25–31 (2010).

    Article  Google Scholar 

  • 13.

    Elorriaga-Verplancken, F., Aurioles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. δ15N and δ13C values in dental collagen as a proxy for age- and sex-related variation in foraging strategies of California sea lions. Mar. Biol. 160, 641–652 (2013).

    CAS  Article  Google Scholar 

  • 14.

    Turner Tomaszewicz, C. N., Seminoff, J. A., Avens, L. & Kurle, C. M. Methods for sampling sequential annual bone growth layers for stable isotope analysis. Methods Ecol. Evol. 7, 556–564 (2016).

    Article  Google Scholar 

  • 15.

    Turner Tomaszewicz, C. N., Seminoff, J. A., Peckham, S. H., Avens, L. & Kurle, C. M. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ15N values from bone growth rings. J. Anim. Ecol. 86, 694–704 (2017).

    Article  Google Scholar 

  • 16.

    Turner Tomaszewicz, C. N., Seminoff, J. A. & Rairez D. Matthew, K. C. M. HHS Public Access. Rapid Commun. Mass Spectrom. 29, 1879–1888 (2015).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197–242 (2001).

    Article  Google Scholar 

  • 18.

    Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48, 625–639 (1984).

    ADS  CAS  Article  Google Scholar 

  • 19.

    Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Megalofonou, P. & de Metrio, G. Age estimation and annulus-formation in dorsal spines of juvenile bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. J. Mar. Biol. Assoc. United Kingdom 80, 753–754 (2000).

    Article  Google Scholar 

  • 21.

    Estrada, J. A., Lutcavage, M. & Thorrold, S. R. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar. Biol. 147, 37–45 (2005).

    Article  Google Scholar 

  • 22.

    Battaglia, P., Pedà, C., Sinopoli, M., Romeo, T. & Andaloro, F. Cephalopods in the diet of young-of-the-year bluefin tuna (Thunnus thynnus L. 1758, Pisces: Scombridae) from the southern Tyrrhenian Sea (central Mediterranean Sea). Ital. J. Zool. 80, 560–565 (2013).

    Article  Google Scholar 

  • 23.

    Chase, B. C. Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish. Bull. 100, 168–180 (2002).

    Google Scholar 

  • 24.

    Karakulak, F. S., Salman, A. & Oray, I. K. Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J. Appl. Ichthyol. 25, 757–761 (2009).

    Article  Google Scholar 

  • 25.

    Logan, J. M. et al. Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol. 158, 73–85 (2011).

    Article  Google Scholar 

  • 26.

    Battaglia, P. et al. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol. Mar. Res. 67, 97–107 (2013).

    ADS  Article  Google Scholar 

  • 27.

    Olafsdottir, D. et al. Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus thynnus L.) during Autumn Migrations to the Iceland Basin. Front. Mar. Sci. 100, 168–180 (2016).

    Google Scholar 

  • 28.

    Seminoff, J. A. et al. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids. PLoS One 7, e37403 (2012).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Hart, K. M. et al. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking. Ecol. Appl. 25, 320–335 (2014).

    Google Scholar 

  • 30.

    Sinopoli, M. et al. Diet of young-of-the-year bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the southern Tyrrhenian (Mediterranean) Sea. J. Appl. Ichthyol. 20, 310–313 (2004).

    Article  Google Scholar 

  • 31.

    Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 150, 647–658 (2007).

    Article  Google Scholar 

  • 32.

    Kitagawa, T. & Fujioka, K. Rapid ontogenetic shift in juvenile Pacific bluefin tuna diet. Mar. Ecol. Prog. Ser. 571, 253–257 (2017).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Logan, J. M. Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes Submitted to the University. (2014).

  • 34.

    Laiz-Carrion, R. et al. Larval bluefin tuna (Thunnus thynnus) trophodynamics from Balearic sea (WM) and gulf of Mexico spawning ecosystems by stable isotope. Collect. Vol. Sci. Pap. ICCAT 71(3), 1354–1365 (2015).

    Google Scholar 

  • 35.

    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Microw. Opt. Technol. Lett. 52, 1597–1599 (2010).

    Article  Google Scholar 

  • 36.

    Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).

    ADS  Article  Google Scholar 

  • 37.

    Collette, B. B. & Nauen, C. E. FAO Species Catalogue Vol. 2 Scombrids of the world an annotated and illustrated catalogue of Tunas, Mackerels, Bonitos and related species know to date. FAO Fisheries Synopsis 2 (1983).

  • 38.

    Collette, B. Fishes of the north-eastern Atlantic and the Mediterranean. (1986).

  • 39.

    Cort, J. L. Age and growth of the blue¢n tuna, Thunnus thynnus (L.) of the northeast Atlantic. ICCAT, Collect. Vol. Sci. Pap. 35, 213–230 (1991).

    Google Scholar 

  • 40.

    Reitsema, L. J., Crews, D. E. & Polcyn, M. Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. J. Archaeol. Sci. 37, 1413–1423 (2010).

    Article  Google Scholar 

  • 41.

    Rumolo, P. et al. Linking spatial distribution and feeding behavior of Atlantic horse mackerel (Trachurus trachurus) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 121, 47–58 (2017).

    ADS  Article  Google Scholar 

  • 42.

    Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  • 43.

    Grothendieck, G. nls2: Non-linear regression with brute force. R package version 0.2. (2013).

  • 44.

    Santamaria, N. et al. Age and growth of Atlantic bluefin tuna, Thunnus thynnus (Osteichthyes: Thunnidae), in the Mediterranean Sea. J. Appl. Ichthyol. 25, 38–45 (2009).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Ice, ice, maybe

    Near real-time, peer-reviewed hypothesis verification informs FEMA on Covid-19 supply chain risks