
Jessop, B. M., Shiao, J., Iizuka, Y. & Tzeng, W. Migratory behaviour and habitat use by American eels Anguilla rostrata as revealed by otolith microchemistry. 233, 217–229 (2002).
Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).
Clementz, M. T. & Koch, P. L. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129, 461–472 (2001).
Zanden, H. B. V., Bjorndal, K. A., Reich, K. J. & Bolten, A. B. Individual specialists in a generalist population: Results from a long-term stable isotope series. Biol. Lett. 6, 711–714 (2010).
Avens, L. et al. Complementary skeletochronology and stable isotope analyses offer new insight into juvenile loggerhead sea turtle oceanic stage duration and growth dynamics. Mar. Ecol. Prog. Ser. 491, 235–251 (2013).
Carlisle, A. B. et al. Using stable isotope analysis to understand the migration and trophic ecology of northeastern Pacific white sharks (Carcharodon carcharias). PLoS One 7 (2012).
Deniro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1980).
Koch, P. L. Isotopic study of the biology of modern and fossil vertebrates. in Stable isotopes in ecology and environmental science. (Blackwell Publishing, Boston, MA., 2007).
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
Chisholm, B. S., Nelson, D. E., Hobson, K. A., Schwarcz, H. P. & Knyf, M. Carbon isotope measurement techniques for bone collagen. J. Archaeol. Sci. 10, 355–360 (1983).
Jørkov, M. L. S., Heinemeier, J. & Lynnerup, N. Evaluating bone collagen extraction methods for stable isotope analysis in dietary studies. J. Archaeol. Sci. 34, 1824–1829 (2007).
Snover, M. L., Hohn, A. A., Crowder, L. B. & Macko, S. A. Combining stable isotopes and skeletal growth marks to detect habitat shifts in juvenile loggerhead sea turtles Caretta caretta. Endanger. Species Res. 13, 25–31 (2010).
Elorriaga-Verplancken, F., Aurioles-Gamboa, D., Newsome, S. D. & Martínez-Díaz, S. F. δ15N and δ13C values in dental collagen as a proxy for age- and sex-related variation in foraging strategies of California sea lions. Mar. Biol. 160, 641–652 (2013).
Turner Tomaszewicz, C. N., Seminoff, J. A., Avens, L. & Kurle, C. M. Methods for sampling sequential annual bone growth layers for stable isotope analysis. Methods Ecol. Evol. 7, 556–564 (2016).
Turner Tomaszewicz, C. N., Seminoff, J. A., Peckham, S. H., Avens, L. & Kurle, C. M. Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ15N values from bone growth rings. J. Anim. Ecol. 86, 694–704 (2017).
Turner Tomaszewicz, C. N., Seminoff, J. A. & Rairez D. Matthew, K. C. M. HHS Public Access. Rapid Commun. Mass Spectrom. 29, 1879–1888 (2015).
Campana, S. E. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. J. Fish Biol. 59, 197–242 (2001).
Schoeninger, M. J. & DeNiro, M. J. Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48, 625–639 (1984).
Tieszen, L. L., Boutton, T. W., Tesdahl, K. G. & Slade, N. A. Fractionation and turnover of stable carbon isotopes in animal tissues: Implications for δ13C analysis of diet. Oecologia 57, 32–37 (1983).
Megalofonou, P. & de Metrio, G. Age estimation and annulus-formation in dorsal spines of juvenile bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. J. Mar. Biol. Assoc. United Kingdom 80, 753–754 (2000).
Estrada, J. A., Lutcavage, M. & Thorrold, S. R. Diet and trophic position of Atlantic bluefin tuna (Thunnus thynnus) inferred from stable carbon and nitrogen isotope analysis. Mar. Biol. 147, 37–45 (2005).
Battaglia, P., Pedà, C., Sinopoli, M., Romeo, T. & Andaloro, F. Cephalopods in the diet of young-of-the-year bluefin tuna (Thunnus thynnus L. 1758, Pisces: Scombridae) from the southern Tyrrhenian Sea (central Mediterranean Sea). Ital. J. Zool. 80, 560–565 (2013).
Chase, B. C. Differences in diet of Atlantic bluefin tuna (Thunnus thynnus) at five seasonal feeding grounds on the New England continental shelf. Fish. Bull. 100, 168–180 (2002).
Karakulak, F. S., Salman, A. & Oray, I. K. Diet composition of bluefin tuna (Thunnus thynnus L. 1758) in the Eastern Mediterranean Sea, Turkey. J. Appl. Ichthyol. 25, 757–761 (2009).
Logan, J. M. et al. Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Mar. Biol. 158, 73–85 (2011).
Battaglia, P. et al. Feeding habits of the Atlantic bluefin tuna, Thunnus thynnus (L. 1758), in the central Mediterranean Sea (Strait of Messina). Helgol. Mar. Res. 67, 97–107 (2013).
Olafsdottir, D. et al. Dietary Evidence of Mesopelagic and Pelagic Foraging by Atlantic Bluefin Tuna (Thunnus thynnus L.) during Autumn Migrations to the Iceland Basin. Front. Mar. Sci. 100, 168–180 (2016).
Seminoff, J. A. et al. Stable isotope tracking of endangered sea turtles: validation with satellite telemetry and δ15N analysis of amino acids. PLoS One 7, e37403 (2012).
Hart, K. M. et al. Determining origin in a migratory marine vertebrate: a novel method to integrate stable isotopes and satellite tracking. Ecol. Appl. 25, 320–335 (2014).
Sinopoli, M. et al. Diet of young-of-the-year bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the southern Tyrrhenian (Mediterranean) Sea. J. Appl. Ichthyol. 20, 310–313 (2004).
Graham, B. S., Grubbs, D., Holland, K. & Popp, B. N. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Mar. Biol. 150, 647–658 (2007).
Kitagawa, T. & Fujioka, K. Rapid ontogenetic shift in juvenile Pacific bluefin tuna diet. Mar. Ecol. Prog. Ser. 571, 253–257 (2017).
Logan, J. M. Tracking diet and movement of Atlantic bluefin tuna (Thunnus thynnus) using carbon and nitrogen stable isotopes Submitted to the University. (2014).
Laiz-Carrion, R. et al. Larval bluefin tuna (Thunnus thynnus) trophodynamics from Balearic sea (WM) and gulf of Mexico spawning ecosystems by stable isotope. Collect. Vol. Sci. Pap. ICCAT 71(3), 1354–1365 (2015).
DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. Microw. Opt. Technol. Lett. 52, 1597–1599 (2010).
Post, D. M. et al. Getting to the fat of the matter: Models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152, 179–189 (2007).
Collette, B. B. & Nauen, C. E. FAO Species Catalogue Vol. 2 Scombrids of the world an annotated and illustrated catalogue of Tunas, Mackerels, Bonitos and related species know to date. FAO Fisheries Synopsis 2 (1983).
Collette, B. Fishes of the north-eastern Atlantic and the Mediterranean. (1986).
Cort, J. L. Age and growth of the blue¢n tuna, Thunnus thynnus (L.) of the northeast Atlantic. ICCAT, Collect. Vol. Sci. Pap. 35, 213–230 (1991).
Reitsema, L. J., Crews, D. E. & Polcyn, M. Preliminary evidence for medieval Polish diet from carbon and nitrogen stable isotopes. J. Archaeol. Sci. 37, 1413–1423 (2010).
Rumolo, P. et al. Linking spatial distribution and feeding behavior of Atlantic horse mackerel (Trachurus trachurus) in the Strait of Sicily (Central Mediterranean Sea). J. Sea Res. 121, 47–58 (2017).
Welch, B. L. The generalization of ‘Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35 (1947).
Grothendieck, G. nls2: Non-linear regression with brute force. R package version 0.2. (2013).
Santamaria, N. et al. Age and growth of Atlantic bluefin tuna, Thunnus thynnus (Osteichthyes: Thunnidae), in the Mediterranean Sea. J. Appl. Ichthyol. 25, 38–45 (2009).
Source: Ecology - nature.com