in

Highly regional population structure of Spondyliosoma cantharus depicted by nuclear and mitochondrial DNA data

  • 1.

    Begg, G. A., Friedland, K. D. & Pearce, J. B. Stock identification and its role in stock assessment and fisheries management: an overview. Fish. Res. 43, 1–8 (1999).

    • Article
    • Google Scholar
  • 2.

    Abaunza, P. et al. Stock identity of horse mackerel (Trachurus trachurus) in the Northeast Atlantic and Mediterranean Sea: integrating the results from different stock identification approaches. Fish. Res. 89, 196–209 (2008).

    • Article
    • Google Scholar
  • 3.

    Welch, D. et al. Integrating different approaches in the definition of biological stocks: a northern Australian multi-jurisdictional fisheries example using grey mackerel. Scomberomorus semifasciatus. Mar. Policy 55, 73–80 (2015).

    • Article
    • Google Scholar
  • 4.

    Ward, R. D. Genetics in fisheries management. Hydrobiologia 420, 191–201 (2000).

  • 5.

    Gopalakrishnan, A., Jayasankar, J., Shah, P. & Shalin, S. Genetic stock characterization of fish using molecular markers in Course manual summer school on advanced methods for fish stock assessment and fisheries management. Lecture Note Series No. 2/2017 308–316 (CMFRI, Kochi, 2017).

  • 6.

    Bauchot, M. L. & Hureau, J. C. Sparidae in: Fishes of the North-Eastern Atlantic and the Mediterranean (eds. Whitehead, P. J. P., Bauchot, M. L., Hureau, J. C., Nielsen, J. & Tortonese, E.) 883–907 (UNESCO, 1986).

  • 7.

    FAO Fisheries and Aquaculture Department. http://www.fao.org/fishery/statistics/collections/en (2010–2018).

  • 8.

    Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Modelling the growth of a protogynous sparid species, Spondyliosoma cantharus (Teleostei, Sparidae). Hydrobiologia 797, 265–275 (2017).

    • Article
    • Google Scholar
  • 9.

    Russell, B., Pollard, D. & Carpenter, K. E. Spondyliosoma cantharus. The IUCN Red List of Threatened Species 2014: e.T170258A1303321. 10.2305/IUCN.UK.2014-3.RLTS.T170258A1303321.en (2014).

  • 10.

    Pinder, A. C., Velterop, R., Cooke, S. J. & Britton, J. R. Consequences of catch-and-release angling for black bream Spondyliosoma cantharus, during the parental care period: implications for management. ICES J. Mar. Sci. 74, 254–62 (2017).

    • Article
    • Google Scholar
  • 11.

    Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Phenotypic changes in the body of black seabream, Spondyliosoma cantharus (Teleostei: Sparidae), along the eastern Atlantic. Estuar. Coast. Shelf. Sci. 214, 31–37 (2018).

  • 12.

    Neves, A. et al. Otolith shape and isotopic ratio analyses as a tool to study Spondyliosoma cantharus population structure. Mar. Environ. Res. 143, 93–100 (2019).

  • 13.

    Cadrin, S. X. & Secor, D. H. Accounting for spatial population structure in stock assessment: past, present, and future in: The future of fisheries science in North America (eds. Beamish, R. J. & Rothschild, B. J.) 405–426 Fish Fish. Ser. 31 (Springer, 2009).

  • 14.

    Ramos-Onsins, S. E. & Rozas, J. Statistical properties of new neutrality tests against population growth. Mol. Biol. Evol. 19, 2092–2100 (2002).

  • 15.

    Patarnello., T., Volckaert, F. & Castilho, R. Pillars of Hercules: is the Atlantic–Mediterranean transition a phylogeographical break? Mol. Ecol. 16, 4426–4444 (2007).

  • 16.

    Bargelloni, L. et al. Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic-Mediterranean divide. J. Evol. Biol. 16, 1149–1158 (2003).

  • 17.

    Bargelloni, L. et al. The Atlantic–Mediterranean transition: Discordant genetic patterns in two seabream species, Diplodus puntazzo (Cetti) and Diplodus sargus (L.). Mol. Phylogenet. Evol. 36, 523–535 (2005).

  • 18.

    Ball, A. O., Beal, M. G., Chapman, R. W. & Sedberry, G. R. Population structure of red porgy, Pagrus pagrus, in the Atlantic Ocean. Mar. Biol. 150, 1321–1332 (2007).

    • Article
    • Google Scholar
  • 19.

    Angiulli, E., Sola, L., Ardizzone, G., Fassatoui, C. & Rossi, A. R. Phylogeography of the common pandora Pagellus erythrinus in the central Mediterranean Sea: sympatric mitochondrial lineages and genetic homogeneity. Mar. Biol. Res. 12, 4–15 (2016).

    • Article
    • Google Scholar
  • 20.

    González-Wangüemert, M., Froufe, E., Pérez-Ruzafa, A. & Alexandrino, P. Phylogeographical history of the white seabream Diplodus sargus (Sparidae): Implications for insularity. Mar. Biol. Res. 7, 250–260 (2011).

    • Article
    • Google Scholar
  • 21.

    Palumbi, S. R., Cipriano, F. & Hare, M. P. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55, 859–868 (2001).

  • 22.

    Luzier, C. W. & Wilson, R. R. Analysis of mtDNA haplotypes of kelp bass tests for sibling-dominated recruitment near marine protected areas of the California Channel Islands. Mar. Ecol. Prog. Ser. 277, 221–230 (2004).

  • 23.

    Schefuß, E., Sinninghe Damsté, J. S. & Jansen, J. H. F. Forcing of tropical Atlantic sea surface temperatures during the mid‐Pleistocene transition. Paleoceanography 19, PA4029 (2004).

  • 24.

    Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729–744 (2004).

    • Article
    • Google Scholar
  • 25.

    Reid, K. et al. Secondary contact and asymmetrical gene flow in a cosmopolitan marine fish across the Benguela upwelling zone. Heredity 117, 307–315 (2016).

  • 26.

    Bernatchez, L., Dodson, J. J. & Boivin, S. Population bottlenecks: influence on mitochondrial DNA diversity and its effect in coregonine stock discrimination. J. Fish Biol. 35, 233–244 (1989).

    • Article
    • Google Scholar
  • 27.

    Cunha, R. L., Lopes, E. P., Reis, D. M. & Castilho, R. Genetic structure of Brachidontes puniceus populations in Cape Verde archipelago shows signature of expansion during the last glacial maximum. J. Mollus. Stud. 77, 175–181 (2011).

    • Article
    • Google Scholar
  • 28.

    FAO Fishery and aquaculture country profiles. Cabo Verde (2008) country profile fact sheets in FAO Fisheries and Aquaculture Department, http://www.fao.org/fishery/facp/CPV/en (2005–2018).

  • 29.

    Smith, P. J. Genetic diversity of marine fisheries resources: possible impacts of fishing. FAO Fisheries Technical Paper No. 344 (Rome, FAO, 1994).

  • 30.

    Ho, S. Y., Phillips, M. J., Cooper, A. & Drummond, A. J. Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol. Biol. Evol. 22, 1561–1568 (2005).

  • 31.

    Ho, S. Y. & Shapiro, B. Skyline‐plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. 11, 423–434 (2011).

  • 32.

    Subramanian, S. & Lambert, D. M. Time dependency of molecular evolutionary rates? Yes and no. Genome Biol. Evol. 3, 1324–1328 (2011).

  • 33.

    Raventós, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).

    • Article
    • Google Scholar
  • 34.

    Faurby, S. & Barber, P. H. Theoretical limits to the correlation between pelagic larval duration and population genetic structure. Mol. Ecol. 21, 3419–3432 (2012).

  • 35.

    Conover, D. O., Clarke, L. M., Munch, S. B. & Wagner, G. N. Spatial and temporal scales of adaptive divergence in marine fishes and the implications for conservation. J. Fish Biol. 69, 21–47 (2006).

    • Article
    • Google Scholar
  • 36.

    Kochzius, M. Trends in fishery genetics in: The future of fisheries science in North America (eds. Beamish, R. J. & Rothschild, B. J.). Fish Fish. Ser. 31, 453–493 (Springer, Dordrecht, 2009).

  • 37.

    Marin, K., Coon, A., Carson, R., Debes, P. V. & Fraser, D. J. Striking phenotypic variation yet low genetic differentiation in sympatric lake trout (Salvelinus namaycush). PLoS ONE 11, e0162325 (2016).

  • 38.

    Vieira, A. R. et al. Genetic and morphological variation of the forkbeard, Phycis phycis (Pisces, Phycidae): evidence of panmixia and recent population expansion along its distribution area. PLoS ONE 11, e0167045 (2016).

  • 39.

    Chow, S., Hazama, K. & Universal, P. C. R. primers for S7 ribosomal protein gene introns in fish. Mol. Ecol. 7, 1255–1256 (1998).

  • 40.

    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic. Acids. Res. 22, 4673–4680 (1994).

  • 41.

    Larkin, M. A. et al. Clustal W and Clustal X Version 2.0. Bioinformatics 23, 2947–2948 (2007).

  • 42.

    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).

    • CAS
    • Google Scholar
  • 43.

    Chang, C.-T. et al. Mixed Sequence Reader: A program for analyzing dna sequences with heterozygous base calling. Sci. World J. 2012, 1–10 (2012).

    • ADS
    • Google Scholar
  • 44.

    Stephens, M., Smith, N. J. & Donnelly, P. A. new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).

  • 45.

    Stephens, M. & Donnelly, P. A. comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003).

  • 46.

    Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).

  • 47.

    Leigh, J. W. & Bryant, D. PopART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).

    • Article
    • Google Scholar
  • 48.

    Clement, M., Snell, Q., Walke, P., Posada, D. & Crandall, K. TCS: estimating gene genealogies. Proc. 16th Int. Parallel Distrib. Process Symp. 2, 184 (2002).

    • Google Scholar
  • 49.

    Excoffier, L., Smouse, P. E. & Quattr, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).

  • 50.

    Excoffier, L. & Lischer, H. E. L. An integrated software package for population genetics data analysis. Mol. Ecol. Resour. 10, 564–67 (2010).

    • Article
    • Google Scholar
  • 51.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. Met. 57, 289–300 (1995).

  • 52.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    • CAS
    • Google Scholar
  • 53.

    Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the Mantel Test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).

    • Article
    • Google Scholar
  • 54.

    Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 105, 437–460 (1983).

  • 55.

    Nei, M. Molecular evolutionary genetics (Columbia University Press, 1987).

  • 56.

    Wickham, H. ggplot2: Elegant graphics for data analysis (Springer-Verlag, 2009).

  • 57.

    R Core Team. R: a language and environment for statistical computing. r foundation for statistical computing. http://www.R-project.org/ (2015).

  • 58.

    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123, 597–601 (1989).

  • 59.

    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–25 (1997).

  • 60.

    Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

  • 61.

    Rogers, A. R. & Harpending, H. C. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).

  • 62.

    Yang, C., Lian, T., Wang, Q.-X., Huang, Y. & Xiao, H. Preliminary study of genetic diversity and population structure of the Relict Gull Larus relictus (Charadriiformes Laridae) using mitochondrial and nuclear genes. Mitochondr. DNA 27, 4246–4249 (2016).

  • 63.

    Neves, A., Vieira, A. R., Sequeira, V., Paiva, R. B. & Gordo, L. S. Insight on reproductive strategy in Portuguese waters of a commercial protogynous species, the black seabream Spondyliosoma cantharus (Sparidae). Fish. Res. 206, 85–95 (2018).

    • Article
    • Google Scholar
  • 64.

    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192, https://doi.org/10.1093/molbev/msi103 (2005).

  • 65.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

  • 66.

    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).

  • 67.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).


  • Source: Ecology - nature.com

    The shape of a defense-growth trade-off governs seasonal trait dynamics in natural phytoplankton

    Ecological Risks Arising from the Impact of Large-scale Afforestation on the Regional Water Supply Balance in Southwest China