in

Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific

  • 1.

    Rogers, A. D. The Biology of Seamounts: 25 Years on. Adv. Mar. Biol. 79, 137–224 (2018).

  • 2.

    Yesson, C., Clark, M. R., Taylor, M. L. & Rogers, A. D. The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep. Res. Part I Oceanogr. Res. Pap. 58, 442–453 (2011).

  • 3.

    Pitcher, T. J. et al. Seamounts: ecology, fisheries and conservation. (Oxford, UK: Blackwell Publishing Ltd., 2007).

  • 4.

    Morato, T., Hoyle, S. D., Allain, V. & Nicol, S. J. Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc. Natl. Acad. Sci. 107, 9707–9711 (2010).

  • 5.

    Bouchet, P. J., Meeuwig, J. J., Salgado Kent, C. P., Letessier, T. B. & Jenner, C. K. Topographic determinants of mobile vertebrate predator hotspots: Current knowledge and future directions. Biol. Rev. 90, 699–728 (2015).

  • 6.

    Morato, T. et al. Evidence of a seamount effect on aggregating visitors. Mar. Ecol. Prog. Ser. 357, 23–32 (2008).

  • 7.

    Johnston, D. W. et al. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount. Biol. Lett. 4, 208–211 (2008).

  • 8.

    Hann, C. H., Smith, T. D. & Torres, L. G. A sperm whale’s perspective: The importance of seasonality and seamount depth. Mar. Mammal Sci. 32, 1470–1481 (2016).

    • Article
    • Google Scholar
  • 9.

    Torres, L. G. et al. From exploitation to conservation: habitat models using whaling data predict ditribution patterns and threat exposure of an endangered whale. Divers. Distrib. 19, 1138–1152 (2013).

    • Article
    • Google Scholar
  • 10.

    Kennedy, A. S. et al. Local and migratory movements of humpback whales (Megaptera novaeangliae) satellite-tracked in the North Atlantic Ocean. Can. J. Zool. 92, 8–17 (2014).

    • Article
    • Google Scholar
  • 11.

    Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S. & Zerbini, A. N. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific Humpback Whales. R. Soc. Open Sci. 2, 150489 (2015).

  • 12.

    Dulau, V. et al. Continuous movement behavior of humpback whales during the breeding season in the southwest Indian Ocean: on the road again! Mov. Ecol. 5, 11 (2017).

  • 13.

    Garrigue, C., Zerbini, A. N., Geyer, Y. & Clapham, P. Movements of satellite-monitored humpback whales from New Caledonia Movements of satellite-monitored humpback whales from New Caledonia. J. Mammal. 91, 109–115 (2010).

    • Article
    • Google Scholar
  • 14.

    Derville, S., Torres, L. G. & Garrigue, C. Social segregation of humpback whales in contrasted coastal and oceanic breeding habitats. J. Mammal. 99, 41–54 (2018).

    • Article
    • Google Scholar
  • 15.

    Derville, S., Torres, L. G., Iovan, C. & Garrigue, C. Finding the right fit: Comparative cetacean distribution models using multiple data sources and statistical approaches. Divers. Distrib. 24, 1657–1673 (2018).

    • Article
    • Google Scholar
  • 16.

    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227 (2017).

  • 17.

    Cartwright, R. et al. Between a Rock and a Hard Place: Habitat Selection in Female-Calf Humpback Whale (Megaptera novaeangliae) Pairs on the Hawaiian Breeding Grounds. Plos One 7, e38004 (2012).

  • 18.

    Smith, J. et al. Identification of humpback whale breeding and calving habitat in the Great Barrier Reef. Mar. Ecol. Prog. Ser. 447, 259–272 (2012).

  • 19.

    Trudelle, L. et al. First insights on spatial and temporal distribution patterns of humpback whales in the breeding ground at Sainte Marie Channel, Madagascar. African J. Mar. Sci. 40, 75–86 (2018).

    • Article
    • Google Scholar
  • 20.

    Guidino, C., Llapapasca, M. A., Silva, S., Alcorta, B. & Pacheco, A. S. Patterns of spatial and temporal distribution of humpback whales at the southern limit of the Southeast Pacific breeding area. Plos One 9, e112627 (2014).

  • 21.

    Lindsay, R. et al. Characterising essential breeding habitat for whales informs the development of large-scale Marine Protected Areas in the South Pacific. Mar. Ecol. Prog. Ser. 548, 263–275 (2016).

  • 22.

    Derville, S. et al. Whales in warming water: Assessing breeding habitat diversity and adaptability in Oceania’ s changing climate. Glob. Chang. Biol. 25, 1466–1481 (2019).

  • 23.

    Childerhouse, S. et al. Megaptera novaeangliae Oceania subpopulation. The IUCN Red List of Threatened Species 2008: e.T132832A3463914, https://doi.org/10.2305/IUCN.UK.2008.RLTS.T132832A3463914.en (2008).

  • 24.

    Garland, E. C. et al. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207 (2015).

  • 25.

    Olavarría, C. et al. Population structure of South Pacific humpback whales and the origin of the eastern Polynesian breeding grounds. Mar. Ecol. Prog. Ser. 330, 257–268 (2007).

  • 26.

    Steel, D. et al. Migratory interchange of humpback whales (Megaptera novaeangliae) among breeding grounds of Oceania and connections to Antarctic feeding areas based on genotype matching. Polar Biol. 3, 1–10 (2017).

    • ADS
    • Google Scholar
  • 27.

    Garrigue, C. et al. Movement of individual humpback whales between wintering grounds of Oceania (South Pacific), 1999 to 2004. J. Cetacean Res. Manag. 3, 275–281 (2011).

    • Google Scholar
  • 28.

    IWC. Report of the sub-committee on other Southern Hemisphere whale stocks. J. Cetacean Res. Manag. 7, 235–244 (2005).

    • Google Scholar
  • 29.

    Jackson, J. A. et al. Southern Hemisphere Humpback Whale Comprehensive Assessment – A synthesis and summary: 2005–2015. Rep. to Sci. Comm. Int. Whal. Comm. SC/66a/SH3, 1–38 (2015).

    • Google Scholar
  • 30.

    Paterson, R. & Paterson, P. A study of the past and present status of humpback whales in east Australian waters. Biol. Conserv. 29, 321–343 (1984).

    • Article
    • Google Scholar
  • 31.

    Bejder, L. et al. Low energy expenditure and resting behaviour of humpback whale mother-calf pairs highlights conservation importance of sheltered breeding areas. Sci. Rep. 9, 771 (2019).

  • 32.

    Hamilton, P. K., Stone, G. S. & Martin, S. M. Note on a deep humpback whale (Megaptera novaeangliae) dive near Bermuda. Bull. Mar. Sci. 61, 491–494 (1997).

    • Google Scholar
  • 33.

    Baird, R. W., Ligon, A. D. & Hooker, S. K. Sub-surface and night-time behavior of humpback whales off Maui, Hawaii: a preliminary report. Report prepared under Contract # 40ABNC050729 from the Hawaiian Islands Humpback Whale National Marine Sanctuary, Kihei, HI, to the Hawaii Wildlife Fund, Paia, HI. 1–19 (2000).

  • 34.

    Herman, E. Y. K. et al. When Whales Collide: Crittercam Offers Insight into the Competitive Behavior of Humpback Whales on Their Hawaiian Wintering Grounds. Mar. Technol. Soc. J. 41, 35–43 (2007).

    • Article
    • Google Scholar
  • 35.

    Videsen, S. K. A., Bejder, L., Johnson, M. & Madsen, P. T. High suckling rates and acoustic crypsis of humpback whale neonates maximise potential for mother–calf energy transfer. Funct. Ecol. 31, 1561–1573 (2017).

    • Article
    • Google Scholar
  • 36.

    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333 (2018).

  • 37.

    Riekkola, L. et al. Application of a multi-disciplinary approach to reveal population structure and Southern Ocean feeding grounds of humpback whales. Ecol. Indic. 89, 455–465 (2018).

    • Article
    • Google Scholar
  • 38.

    Zerbini, A. N. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–118 (2011).

    • Google Scholar
  • 39.

    Mate, B., Mesecar, R. & Lagerquist, B. The evolution of satellite-monitored radio tags for large whales: One laboratory’s experience. Deep. Res. Part II Top. Stud. Oceanogr. 54, 224–247 (2007).

  • 40.

    Félix, F. & Guzmán, H. M. Satellite tracking and sighting data analyses of Southeast Pacific humpback whales (Megaptera novaeangliae): Is the migratory route coastal or oceanic? Aquat. Mamm. 40, 329–340 (2014).

    • Article
    • Google Scholar
  • 41.

    Gales, N. et al. Satellite tracking of Australian humpback (Megaptera novaeangliae) nd pygmy blue whales (Balaenoptera musculus brevicauda). Sci. Comm. Int. Whal. Comm. SC/62/SH21, 1–9 (2010).

    • Google Scholar
  • 42.

    Hazen, E. L. et al. Fine-scale prey aggregations and foraging ecology of humpback whales Megaptera novaeangliae. Mar. Ecol. Prog. Ser. 395, 75–89 (2009).

  • 43.

    Tyson, R. B., Friedlaender, A. S., Ware, C., Stimpert, A. K. & Nowacek, D. P. Synchronous mother and calf foraging behaviour in humpback whales Megaptera novaeangliae: insights from multi-sensor suction cup tags. Mar. Ecol. Prog. Ser. 457, 209–220 (2012).

  • 44.

    Goldbogen, J. A. et al. Foraging behavior of humpback whales: kinematic and respiratory patterns suggest a high cost for a lunge. J. Exp. Biol. 211, 3712–3719 (2008).

  • 45.

    Heide-Jorgensen, M. P. & Laidre, K. L. Autumn space-use patterns of humpback whales (Megaptera novaeangliae) in West Greenland. J. Cetacean Res. Manag. 9, 121–126 (2007).

    • Google Scholar
  • 46.

    Ware, C., Friedlaender, A. S. & Nowacek, D. P. Shallow and Deep Lunge Feeding of Humpback Whales in Fjords of the West Antarctic Peninsula. Mar. Mammal Sci. 27, 587–605 (2011).

    • Article
    • Google Scholar
  • 47.

    Dietz, R., Teilmann, J., Heide-Jørgensen, M. P. & Jensen, M. V. Satellite tracking of Humpback whales in West Greenland. NERI Technical Report (2002).

  • 48.

    Friedlaender, A. S., Tyson, R. B., Stimpert, A. K., Read, A. J. & Nowacek, D. P. Extreme diel variation in the feeding behavior of humpback whales along the western Antarctic Peninsula during autumn. Mar. Ecol. Prog. Ser. 494, 281–289 (2013).

  • 49.

    Dolphin, W. F. Prey densities and foraging of humpback whales, Megaptera novaeangliae. Experientia 43, 468–471 (1987).

    • Article
    • Google Scholar
  • 50.

    Henderson, E. E., Aschettino, J., Deakos, M., Alongi, G. & Leota, T. Satellite Tracking of Migrating Humpback Whales in Hawai’i. Technical report 3106 Systems Center Pacific, San Diego, CA, 1-38 (2018).

  • 51.

    Van Haren, H. Humpback whale migration affected by internal wave surfing and mixing? Response to Garrigue al. 2015, 1–4 (2015).

    • Google Scholar
  • 52.

    Torres, L. G. A sense of scale: Foraging cetaceans’ use of scale-dependent multimodal sensory systems. Mar. Mammal Sci. 33, 1170–1193 (2017).

    • Article
    • Google Scholar
  • 53.

    Norris, K. Some observations on the migration and orientation of marine mammals. in Animal orientation and navigation (ed. Storm, R. M.) 101–125 (Oregon State University Press, Corvallis, OR, 1967).

  • 54.

    Horton, T. W. et al. Route Fidelity during Marine Megafauna Migration. Front. Mar. Sci. 4, 1–21 (2017).

    • Google Scholar
  • 55.

    Garrigue, C. et al. Humpback whale offshore breeding grounds in the South Pacific: unravelling the network. 22th Biennial Conference on the Biology of Marine Mammals, Halifax, Canada (2017).

  • 56.

    Goldbogen, J. A. et al. How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration. Ann. Rev. Mar. Sci. 9, 367–386 (2017).

  • 57.

    Croll, D. A., Acevedo-Gutiérrez, A., Tershy, B. R. & Urbán-Ramírez, J. The diving behavior of blue and fin whales: Is dive duration shorter than expected based on oxygen stores? Comp. Biochem. Physiol. – A Mol. Integr. Physiol. 129, 797–809 (2001).

  • 58.

    Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshw. Res. 16, 33–128 (1965).

    • Article
    • Google Scholar
  • 59.

    Dawbin, W. H. The seasonal migration of humpback whales. in Whales, dolphins, and porpoises (ed. Norris, K. S.) 145–170 (Berkeley and Los Angeles, CA: University of California Press, 1966).

  • 60.

    Baraff, L. S., Clapham, P. J., Mattila, D. K. & Bowman, R. S. Feeding behaviour of a humpback whale in low-latitude waters. Mar. Mammal Sci. 7, 197–202 (1991).

    • Article
    • Google Scholar
  • 61.

    De Sá Alves, L. C. P., Andriolo, A., Zerbini, A. N., Pizzorno, J. L. A. & Clapham, P. J. Record of feeding by humpback whales (Megaptera novaeangliae) in tropical waters off Brazil. Mar. Mammal Sci. 25, 416–419 (2009).

    • Article
    • Google Scholar
  • 62.

    Danilewicz, D., Tavares, M., Moreno, I. B., Ott, P. H. & Trigo, C. C. Evidence of feeding by the humpback whale (Megaptera novaeangliae) in mid-latitude waters of the western South Atlantic. Mar. Biodivers. Rec. 2, e88 (2009).

    • Article
    • Google Scholar
  • 63.

    Gendron, D. & Urban, J. Evidence of Feeding By Humpback Whales Megaptera Novaeangliae in the Baja California Breeding Ground, Mexico. Mar. Mammal Sci. 9, 76–81 (1993).

    • Article
    • Google Scholar
  • 64.

    Lagerquist, B. A., Mate, B. R., Ortega-Ortiz, J. G., Winsor, M. & Urbán-Ramirez, J. Migratory movements and surfacing rates of humpback whales (Megaptera novaeangliae) satellite tagged at Socorro Island, Mexico. Mar. Mammal Sci. 24, 815–830 (2008).

    • Google Scholar
  • 65.

    Cerchio, S. et al. Satellite telemetry of humpback whales off Madagascar reveals insights on breeding behavior and long-range movements within the southwest Indian Ocean. Mar. Ecol. Prog. Ser. 562, 193–209 (2016).

  • 66.

    Trudelle, L. et al. Influence of environmental parameters on movements and habitat utilization of humpback whales in the Madagascar breeding ground. R. Soc. Open Sci. 3, 160616 (2016).

  • 67.

    Menkes, C. E. et al. Seasonal oceanography from physics to micronekton in the south-west pacific. Deep. Res. Part II Top. Stud. Oceanogr. 113, 125–144 (2015).

  • 68.

    Pérez, M. J. et al. Fin Whales (Balaenoptera physalus) feeding on Euphausia mucronata in nearshore waters off north-central chile. Aquat. Mamm. 32, 109–113 (2006).

    • Article
    • Google Scholar
  • 69.

    Friedlaender, A. S. et al. Diel changes in humpback whale Megaptera novaeangliae feeding behavior in response to sand lance Ammodytes spp. behavior and distribution. Mar. Ecol. Prog. Ser. 395, 91–100 (2009).

  • 70.

    Nicholls, D. G., Robertson, C. J. & Murray, M. D. Measuring accuracy and precision for CLS: Argos satellite telemetry locations. Notornis 54, 137–157 (2007).

    • Google Scholar
  • 71.

    Cascão, I. et al. Persistent Enhancement of Micronekton Backscatter at the Summits of Seamounts in the Azores. Front. Mar. Sci. 4, 1–15 (2017).

    • Article
    • Google Scholar
  • 72.

    Kaschner, K., Quick, N. J., Jewell, R., Williams, R. & Harris, C. M. Global Coverage of Cetacean Line-Transect Surveys: Status Quo, Data Gaps and Future Challenges. Plos One 7, e44075 (2012).

  • 73.

    Gardes, L. et al. Analyse stratégique de l’Espace maritime de la Nouvelle-Calédonie. Agence des aires marines protégées et Gouvernement de la Nouvelle-Calédonie, Nouméa. 1-395 (2014).

  • 74.

    Mate, B. R., Glsiner, R. & Mobley, J. Local and migratory movements of Hawaiian humpback whales tracked by satellite telemetry. Can. J. Zool. 76, 863–868 (1998).

    • Article
    • Google Scholar
  • 75.

    Frankel, A. S. & Clark, C. W. Results of low-frequency playback of M-sequence noise to humpback whales, Megaptera novaeangliae, in Hawaii. Can. J. Zool. 76, 521–535 (1998).

    • Google Scholar
  • 76.

    Clapham, P. J. & Zerbini, A. N. Are social aggregation and temporary immigration driving high rates of increase in some Southern Hemisphere humpback whale populations? Mar. Biol. 162, 625–634 (2015).

    • Article
    • Google Scholar
  • 77.

    Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).

  • 78.

    Torre-Williams, L., Martinez, E., Meynecke, J. O., Reinke, J. & Stockin, K. A. Presence of newborn humpback whale (Megaptera novaeangliae) calves in Gold Coast Bay, Australia. Mar. Freshw. Behav. Physiol. 52, 199–216 (2019).

  • 79.

    Garrigue, C. et al. First assessment of interchange of humpback whales between Oceania and the east coast of Australia. J. Cetacean Res. Manag. Special Is, 269–274 (2011).

    • Google Scholar
  • 80.

    Valsecchi, E., Corkeron, P., Galli, P., Sherwin, W. & Bertorelle, G. Genetic evidence for sex-specific migratory behaviour in western South Pacific humpback whales. Mar. Ecol. Prog. Ser. 398, 275–286 (2010).

  • 81.

    Watling, L. & Auster, P. J. Seamounts on the High Seas Should Be Managed as Vulnerable Marine Ecosystems. Front. Mar. Sci. 4, 1–4 (2017).

    • Article
    • Google Scholar
  • 82.

    Richer de Forges, B., Koslow, J. A. & Poore, G. C. B. Diversity and endemism of the benthic seamount megafauna in the southwest Pacific. Nature 405, 944–947 (2000).

  • 83.

    Heide-Jorgensen, M. P., Kleivane, L., Oien, N., Laidre, K. L. & Jensen, M. V. A new technique for deploying satellite transmitters on baleen whales: Tracking a blue whale (Balaenoptera musculus) in the North Atlantic. Mar. Mammal Sci. 17, 949–954 (2001).

    • Article
    • Google Scholar
  • 84.

    Lambertsen, R. H., Baker, C. S., Weinrich, M. & Modi, W. S. An improved whale biopsy system designed for multidisciplinary research. in Non destructive biomarkers in vertebrates (eds. Fossi, C. & Leonzio, C.) 219–244 (Lewis Publishers: London, 1994).

  • 85.

    Gilson, A. & Syvanen, M. Deer gender determination by polymerase chain reaction: validation study and application to tissues, bloodstains and hair forensic samples from California. Calif. Fish Game 84, 59–69 (1998).

    • Google Scholar
  • 86.

    Garrigue, C., Dodemont, R., Steel, D. & Baker, C. S. Organismal and ‘gametic’ capture-recapture using microsatellite genotyping confirm low abundance and reproductive autonomy of humpback whales on the wintering grounds of New Caledonia. Mar. Ecol. Prog. Ser. 274, 251–262 (2004).

  • 87.

    Rasmussen, K. et al. Southern Hemisphere humpback whales wintering off Central America: insights from water temperature into the longest mammalian migration. Biol. Lett. 3, 302–5 (2007).

  • 88.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2016).

  • 89.

    Zerbini, A. N. et al. Space use patterns of the endangered North Pacific right whale Eubalaena japonica in the Bering Sea. Mar. Ecol. Prog. Ser. 532, 269–281 (2015).

  • 90.

    Johnson, D., London, J., Lea, M. A. & Durban, J. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008).

  • 91.

    Barraquand, F. & Benhamou, S. Animal movements in heterogeneous landscapes: identifying profitable places and homogeneous movements bouts. Ecology 89, 3336–3348 (2008).

  • 92.

    Fauchald, P. & Tveraa, T. Using First-Passage Time in the Analysis of Area-Restricted Abd Habitat Selection. Ecology 84, 282–288 (2003).

    • Article
    • Google Scholar
  • 93.

    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models, volume 43 of Monographs on Statistics and Applied Probability. (Chapman and Hall/CRC, 1990).

  • 94.

    Allain, V. et al. Enhanced seamount location database for the western and central Pacific Ocean: Screening and cross-checking of 20 existing datasets. Deep. Res. Part I Oceanogr. Res. Pap. 55, 1035–1047 (2008).

  • 95.

    DTSI. Atlas bathymétrique de Nouvelle-Calédonie. Portail de l’information géographique de Nouvelle-Calédonie, http://www. geoportal.gouv.nc. Accessed February 2016, 2016).

  • 96.

    Wood, S. N. Generalized additive models: an introduction with R (2nd ed.). (New York, NY: CRC Press, 2017).

  • 97.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Modell. 135, 147–186 (2000).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Scientists quantify how wave power drives coastal erosion

    Emissions of several ozone-depleting chemicals are larger than expected