in

Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth

  • 1.

    Forister, M. L. et al. The global distribution of diet breadth in insect herbivores. Proc. Natl Acad. Sci. USA 112, 442–447 (2015).

  • 2.

    MacArthur, R. H. Geographical Ecology: Patterns in the Distribution of Species (Harper and Row, 1972).

  • 3.

    Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. Biol. Sci. 267, 739–745 (2000).

  • 4.

    Vázquez, D. P. & Stevens, R. D. The latitudinal gradient in niche breadth: concepts and evidence. Am. Nat. 164, E1–E19 (2004).

  • 5.

    Novotny, V. et al. Why are there so many species of herbivorous insects in tropical rainforests? Science 313, 1115–1118 (2006).

  • 6.

    Dyer, L. A. et al. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448, 696–699 (2007).

  • 7.

    Lancaster, L. T. Widespread range expansions shape latitudinal variation in insect thermal limits. Nat. Clim. Change 6, 618–621 (2016).

    • Article
    • Google Scholar
  • 8.

    Slove, J., Janz, N., Strimmer, K., Midford, P. & Leibowits, T. The relationship between diet breadth and geographic range size in the butterfly subfamily Nymphalinae – a study of global scale. PLoS ONE 6, e16057 (2011).

  • 9.

    Nylin, S. et al. Embracing colonizations: a new paradigm for species association dynamics. Trends Ecol. Evol. 33, 4–14 (2018).

  • 10.

    Janz, N. & Nylin, S. in Specialization, Speciation, and Radiation (ed. Tilmon, K.) 203–215 (Univ. California Press, 2008).

  • 11.

    Lancaster, L. T., Dudaniec, R. Y., Hansson, B. & Svensson, E. I. Latitudinal shift in thermal niche breadth results from thermal release during a climate-mediated range expansion. J. Biogeogr. 42, 1953–1963 (2015).

    • Article
    • Google Scholar
  • 12.

    Losos, Jackman, Larson, Queiroz & Rodriguez-Schettino Contingency and determinism in replicated adaptive radiations of island lizards. Science 279, 2115–2118 (1998).

  • 13.

    Agosta, S. J., Janz, N. & Brooks, D. R. How specialists can be generalists: resolving the ‘parasite paradox’; and implications for emerging infectious disease. Zoology 27, 151–162 (2010).

    • Google Scholar
  • 14.

    Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Phil. Trans. R. Soc. B 372, 20160046 (2017).

  • 15.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

  • 16.

    Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).

    • Article
    • Google Scholar
  • 17.

    Robinson, G. S., Ackery, P. R., Kitching, I. J., Beccaloni, G. W. & Hernández, L. M. HOSTS – A Database of the World’s Lepidopteran Hostplants (Natural History Museum, accessed 15 June 2016); http://www.nhm.ac.uk/hosts

  • 18.

    GBIF.org (The Global Biodiversity Information Facility, accessed 7 August 2016); www.gbif.org

  • 19.

    Mason, S. C. et al. Geographical range margins of many taxonomic groups continue to shift polewards. Biol. J. Linn. Soc. 115, 586–597 (2015).

    • Article
    • Google Scholar
  • 20.

    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Change Biol. 15, 732–743 (2009).

    • Article
    • Google Scholar
  • 21.

    Schmitt, T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 4, 11 (2007).

  • 22.

    Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

  • 23.

    Kerdelhué, C. et al. Quaternary history and contemporary patterns in a currently expanding species. BMC Evol. Biol. 9, 220 (2009).

  • 24.

    de Jong, M. A., Wahlberg, N., van Eijk, M., Brakefield, P. M. & Zwaan, B. J. Mitochondrial DNA signature for range-wide populations of Bicyclus anynana suggests a rapid expansion from recent refugia. PLoS ONE 6, e21385 (2011).

  • 25.

    Eidesen, P. B. et al. Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytol. 200, 898–910 (2013).

  • 26.

    Todisco, V. et al. Mitochondrial phylogeography of the Holarctic Parnassius phoebus complex supports a recent refugial model for alpine butterflies. J. Biogeogr. 39, 1058–1072 (2012).

    • Article
    • Google Scholar
  • 27.

    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

  • 28.

    Pateman, R. M., Hill, J. K., Roy, D. B., Fox, R. & Thomas, C. D. Temperature-dependent alterations in host use drive rapid range expansion in a butterfly. Science 336, 1028–1030 (2012).

  • 29.

    Braschler, B. & Hill, J. K. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album. J. Anim. Ecol. 76, 415–423 (2007).

  • 30.

    Suehiro, W. et al. Radiocarbon analysis reveals expanded diet breadth associates with the invasion of a predatory ant. Sci. Rep. 7, 15016 (2017).

  • 31.

    Shively, R., Barboza, P., Doak, P. & Jung, T. S. Increased diet breadth of little brown bats (Myotis lucifugus) at their northern range limit: a multimethod approach. Can. J. Zool. 96, 31–38 (2018).

  • 32.

    Eloy de Amorim, M. et al. Lizards on newly created islands independently and rapidly adapt in morphology and diet. Proc. Natl Acad. Sci. USA 114, 8812–8816 (2017).

  • 33.

    Singer, M. C. & Parmesan, C. Colonizations cause host shifts, diversification of preferences and expansion of butterfly diet breadth. Preprint at bioRxiv https://doi.org/10.1101/2020.03.31.017830 (2020).

  • 34.

    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).

  • 35.

    Mattila, N., Kaitala, V., Komonen, A., Päivinen, J. & Kotiaho, J. S. Ecological correlates of distribution change and range shift in butterflies. Insect Conserv. Divers. 4, 239–246 (2011).

    • Article
    • Google Scholar
  • 36.

    Fordyce, J. A. & Nice, C. C. Contemporary patterns in a historical context: phylogenetic history of the pipevine swallowtail, Battus philenor (Papilionidae). Evolution 57, 1089–1099 (2003).

    • Article
    • Google Scholar
  • 37.

    Bridle, J. R., Buckley, J., Bodsworth, E. J. & Thomas, C. D. Evolution on the move: specialization on widespread resources associated with rapid range expansion in response to climate change. Proc. Biol. Sci. 281, 20131800 (2014).

  • 38.

    Dapporto, L. & Dennis, R. L. H. The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157, 229–236 (2013).

    • Article
    • Google Scholar
  • 39.

    Janz, N., Nyblom, K. & Nylin, S. Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55, 783–796 (2001).

  • 40.

    de la Paz Celorio-Mancera, M. et al. Mechanisms of macroevolution: polyphagous plasticity in butterfly larvae revealed by RNA-Seq. Mol. Ecol. 22, 4884–4895 (2013).

  • 41.

    Snell-Rood, E. C., Troth, A. & Moczek, A. P. DNA methylation as a mechanism of nutritional plasticity: limited support from horned beetles. J. Exp. Zool. B 320, 22–34 (2013).

  • 42.

    Janz, N. & Nylin, S. The role of female search behaviour in determining host plant range in plant feeding insects: a test of the information processing hypothesis. Proc. R. Soc. B 264, 701–707 (1997).

    • Article
    • Google Scholar
  • 43.

    Jahner, J. P., Bonilla, M. M., Badik, K. J., Shapiro, A. M. & Forister, M. L. Use of exotic hosts by Lepidoptera: widespread species colonize more novel hosts. Evolution 65, 2719–2724 (2011).

  • 44.

    Singer, M. C., Stefanescu, C. & Pen, I. When random sampling does not work: standard design falsely indicates maladaptive host preferences in a butterfly. Ecol. Lett. 5, 1–6 (2002).

    • Article
    • Google Scholar
  • 45.

    Singer, M. C. & Lee, J. R. Discrimination within and between host species by a butterfly: implications for design of preference experiments. Ecol. Lett. 3, 101–105 (2000).

    • Article
    • Google Scholar
  • 46.

    Forister, M. L. & Jenkins, S. H. A neutral model for the evolution of diet breadth. Am. Nat. 190, E40–E54 (2017).

  • 47.

    Singer, M. C., Wee, B., Hawkins, S. & Butcher, M. in Specialization, Speciation, and Radiation: The Evolutionary Biology of Herbivorous Insects (ed. Tilmon, K.) 311–324 (Univ. California Press, 2008).

  • 48.

    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    • Article
    • Google Scholar
  • 49.

    Natural Earth v.1.4.0 (Natural Earth, 2011); https://go.nature.com/2VHqgTQ

  • 50.

    Gillespie, C. S. Fitting heavy tailed distributions: the poweRlaw package. J. Stat. Softw. 64, 1–16 (2015).

    • Article
    • Google Scholar
  • 51.

    R Core Development Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2012).

  • 52.

    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    • Article
    • Google Scholar
  • 53.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–49 (2015).

    • Article
    • Google Scholar
  • 54.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: Tests for Random and Fixed Effects for Linear Mixed Effects Models (lmer Objects of lme4package) (2014).

  • 55.

    Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference based on (Q)AIC(c) (2015).

  • 56.

    Frank, A. F. mer-utils.R (GitHub, 2014); https://go.nature.com/2W5PLx5

  • 57.

    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

  • 58.

    Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography (Cop.) 42, 1353–1359 (2019).

    • Article
    • Google Scholar
  • 59.

    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).

  • 60.

    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).

  • 61.

    Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R version 2.4.0 (2018); https://CRAN.R-project.org/package=sjPlot


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders