in

Identification of plastic-associated species in the Mediterranean Sea using DNA metabarcoding with Nanopore MinION

  • 1.

    Windsor, F. M. et al. A catchment-scale perspective of plastic pollution. Glob. Change Biol. 25, 1207–1221 (2019).

    ADS  Article  Google Scholar 

  • 2.

    Boucher, J. & Billard, G. The challenges of measuring plastic pollution. Field Actions Sci. Rep. J. Field Actions 19, 68–75 (2019).

    Google Scholar 

  • 3.

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).

    Article  Google Scholar 

  • 5.

    Amaral-Zettler, L. A., Zettler, E. R. & Mincer, T. J. Ecology of the plastisphere. Nat. Rev. Microbiol. 18, 139–151 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Dussud, C. et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ. Pollut. 236, 807–816 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 8.

    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    De Tender, C. A. et al. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ. Sci. Technol. 49, 9629–9638 (2015).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 10.

    Santos, A., van Aerle, R., Barrientos, L. & Martinez-Urtaza, J. Computational methods for 16S metabarcoding studies using Nanopore sequencing data. Comput. Struct. Biotechnol. J. 18, 296–305 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Jacquin, J. et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the ‘plastisphere’. Front. Microbiol. 10, 865 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Bleidorn, C. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst. Biodivers. 14, 1–8 (2016).

    Article  Google Scholar 

  • 13.

    Krehenwinkel, H. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Pawlowski, J. et al. CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol. 10, e1001419 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Leray, M. & Knowlton, N. Censusing marine eukaryotic diversity in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150331 (2016).

    Article  Google Scholar 

  • 16.

    Piganeau, G., Eyre-Walker, A., Grimsley, N. & Moreau, H. How and why DNA barcodes underestimate the diversity of microbial eukaryotes. PLoS ONE 6, e16342 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Saunders, G. W. & Kucera, H. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogamie Algologie 31, 487 (2010).

    Google Scholar 

  • 18.

    Schoch, C. L. et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. 109, 6241–6246 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Hebert, P. D., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 313–321 (2003).

    CAS  Article  Google Scholar 

  • 20.

    Bahram, M., Anslan, S., Hildebrand, F., Bork, P. & Tedersoo, L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11, 487–494 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 21.

    Debeljak, P. et al. Extracting DNA from ocean microplastics: a method comparison study. Anal. Methods 9, 1521–1526 (2017).

    CAS  Article  Google Scholar 

  • 22.

    Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703 (1991).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS ONE 9, e87624 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 25.

    Vieira, H. H. et al. tufA gene as molecular marker for freshwater Chlorophyceae. Algae 31, 155–165 (2016).

    CAS  Article  Google Scholar 

  • 26.

    De Beeck, M. O. et al. Comparison and validation of some ITS primer pairs useful for fungal metabarcoding studies. PLoS ONE 9, e97629 (2014).

    ADS  Article  Google Scholar 

  • 27.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Article  Google Scholar 

  • 28.

    De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broeckhoven, C. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics 34, 2666–2669 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 29.

    Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Baloğlu, B. et al. A workflow for accurate metabarcoding using nanopore MinION sequencing. BioRxiv. https://doi.org/10.1101/2020.05.21.108852 (2020).

    Article  Google Scholar 

  • 31.

    Srivathsan, A. et al. A Min IONTM-based pipeline for fast and cost-effective DNA barcoding. Mol. Ecol. Resour. 18, 1035–1049 (2018).

    CAS  Article  Google Scholar 

  • 32.

    Maestri, S. et al. A rapid and accurate MinION-based workflow for tracking species biodiversity in the field. Genes 10, 468 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • 33.

    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Voorhuijzen-Harink, M. M. et al. Toward on-site food authentication using nanopore sequencing. Food Chem. X2 (2019).

  • 35.

    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259–264 (2019).

    Article  CAS  Google Scholar 

  • 36.

    Sauvage, T., Schmidt, W. E., Suda, S. & Fredericq, S. A metabarcoding framework for facilitated survey of endolithic phototrophs with tufA. BMC Ecol. 16, 8 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Heller, P., Casaletto, J., Ruiz, G. & Geller, J. A database of metazoan cytochrome c oxidase subunit I gene sequences derived from GenBank with CO-ARBitrator. Sci. Data 5, 180156 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 38.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv, 299537 (2018).

  • 40.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2014).

    Google Scholar 

  • 41.

    Mafune, K. K., Godfrey, B. J., Vogt, D. J. & Vogt, K. A. A rapid approach to profiling diverse fungal communities using the MinION™ nanopore sequencer. BioTechniques 68, 72–78 (2019).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 42.

    Herbst, F. A. et al. Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP). Proteomics 13, 2910–2920 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Jin, H. M., Kim, J. M., Lee, H. J., Madsen, E. L. & Jeon, C. O. Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ. Sci. Technol. 46, 7731–7740 (2012).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Lin, X., Yang, B., Shen, J. & Du, N. Biodegradation of crude oil by an Arctic psychrotrophic bacterium Pseudoalteromomas sp. P29. Curr. Microbiol. 59, 341–345 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    Hedlund, B. P. & Staley, J. T. Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ. Microbiol. 8, 178–182 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Schneiker, S. et al. Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis. Nat. Biotechnol. 24, 997–1004 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Yakimov, M. M. et al. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Evolut. Microbiol. 48, 339–348 (1998).

    CAS  Google Scholar 

  • 48.

    Delacuvellerie, A., Cyriaque, V., Gobert, S., Benali, S. & Wattiez, R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J. Hazard. Mater. 380, 120899 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Wangensteen, O. S. & Turon, X. Metabarcoding techniques for assessing biodiversity of marine animal forests. Mar. Anim. For. Ecol. Benthic Biodivers. Hotspots 1, 445–503 (2017).

    Article  Google Scholar 

  • 50.

    Truelove, N. K., Andruszkiewicz, E. A. & Block, B. A. A rapid environmental DNA method for detecting white sharks in the open ocean. Methods Ecol. Evol. 10, 1128–1135 (2019).

    Article  Google Scholar 

  • 51.

    Gillespie, R. et al. Nanopore sequencing of long ribosomal DNA amplicons enables portable and simple biodiversity assessments with high phylogenetic resolution across broad taxonomic scale. GigaScience 8, giz006 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Kono, N. & Arakawa, K. Nanopore sequencing: review of potential applications in functional genomics. Dev. Growth Differ. 61, 316–326 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • 53.

    Nair, S. A., Devassy, V., Dwivedi, S. & Selvakumar, R. Preliminary observations on tar-like material observed on some beaches. Curr. Sci. India 41, 766–767 (1972).

    Google Scholar 

  • 54.

    Kasai, Y. et al. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ. Microbiol. 4, 141–147 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 55.

    Reisser, J. et al. Millimeter-sized marine plastics: a new pelagic habitat for microorganisms and invertebrates. PLoS ONE 9, e100289 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Masó, M., Fortuño, J. M., de Juan, S. & Demestre, M. Microfouling communities from pelagic and benthic marine plastic debris sampled across Mediterranean coastal waters. Sci. Mar. 80, 117–127 (2016).

    Article  Google Scholar 

  • 57.

    Wang, S. et al. The interactions between microplastic polyvinyl chloride and marine diatoms: physiological, morphological, and growth effects. Ecotoxicol. Environ. Saf. 203, 111000 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 58.

    De Tender, C. et al. A review of microscopy and comparative molecular-based methods to characterize “Plastisphere” communities. Anal. Methods 9, 2132–2143 (2017).

    Article  CAS  Google Scholar 


  • Source: Ecology - nature.com

    Georgina Mace (1953–2020)

    Designing off-grid refrigeration technologies for crop storage in Kenya