in

Increasing contribution of peatlands to boreal evapotranspiration in a warming climate

  • 1.

    Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D. & Volney, W. J. A. An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 21, 207–226 (2013).

    • Google Scholar
  • 2.

    Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    • Google Scholar
  • 3.

    Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. CATENA 160, 134–140 (2018).

    • Google Scholar
  • 4.

    Bradshaw, C. J. A. & Warkentin, I. G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24–30 (2015).

    • Google Scholar
  • 5.

    Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    • Google Scholar
  • 6.

    Goulden, M. L. et al. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214–217 (1998).

    • CAS
    • Google Scholar
  • 7.

    Kauppi, P. E., Posch, M. & Pirinen, P. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).

    • Google Scholar
  • 8.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    • CAS
    • Google Scholar
  • 9.

    Koven, C. D. Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nat. Geosci. 6, 452–456 (2013).

    • CAS
    • Google Scholar
  • 10.

    Allison, S. D. & Treseder, K. K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Glob. Change Biol. 14, 2898–2909 (2008).

    • Google Scholar
  • 11.

    Gentine, P. et al. Coupling between the terrestrial carbon and water cycles—a review. Environ. Res. Lett. 14, 083003 (2019).

    • CAS
    • Google Scholar
  • 12.

    Woo, M., Thorne, R., Szeto, K. & Yang, D. Streamflow hydrology in the boreal region under the influences of climate and human interference. Philos. Trans. R. Soc. B 363, 2249–2258 (2008).

    • Google Scholar
  • 13.

    Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    • Google Scholar
  • 14.

    Lafleur, P. M. & Rouse, W. R. The influence of surface cover and climate on energy partitioning and evaporation in a subarctic wetland. Bound. Layer Meteorol. 44, 327–347 (1988).

    • Google Scholar
  • 15.

    Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    • Google Scholar
  • 16.

    Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).

    • CAS
    • Google Scholar
  • 17.

    Brümmer, C. et al. How climate and vegetation type influence evapotranspiration and water use efficiency in Canadian forest, peatland and grassland ecosystems. Agric. For. Meteorol. 153, 14–30 (2012).

    • Google Scholar
  • 18.

    Barr, A. G., Betts, A. K., Black, T. A., McCaughey, J. H. & Smith, C. D. Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. J. Geophys. Res. Atmos. 106, 33543–33550 (2001).

    • Google Scholar
  • 19.

    Massmann, A., Gentine, P. & Lin, C. When does vapor pressure deficit drive or reduce evapotranspiration. J. Adv. Model. Earth Syst. 11, 3305–3320 (2019).

    • Google Scholar
  • 20.

    Admiral, S. W. & Lafleur, P. M. Partitioning of latent heat flux at a northern peatland. Aquat. Bot. 86, 107–116 (2007).

    • Google Scholar
  • 21.

    Williams, T. G. & Flanagan, L. B. Effect of changes in water content on photosynthesis, transpiration and discrimination against 13CO2 and C18O16O in Pleurozium and Sphagnum. Oecologia 108, 38–46 (1996).

    • Google Scholar
  • 22.

    Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

    • Google Scholar
  • 23.

    Kellner, E. Surface energy fluxes and control of evapotranspiration from a Swedish Sphagnum mire. Agric. For. Meteorol. 110, 101–123 (2001).

    • Google Scholar
  • 24.

    Helbig, M. et al. Regional atmospheric cooling and wetting effect of permafrost thaw-induced boreal forest loss. Glob. Change Biol. 22, 4048–4066 (2016).

    • Google Scholar
  • 25.

    Chaudhary, N., Miller, P. A. & Smith, B. Modelling past, present and future peatland carbon accumulation across the Pan-Arctic region. Biogeosciences 14, 4023–4044 (2017).

    • Google Scholar
  • 26.

    Qiu, C. et al. ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water, and energy fluxes on daily to annual scales. Geosci. Model Dev. 11, 497–519 (2018).

    • CAS
    • Google Scholar
  • 27.

    Wu, Y., Verseghy, D. L. & Melton, J. R. Integrating peatlands into the coupled canadian land surface scheme (class) v3.6 and the canadian terrestrial ecosystem model (CTEM) v2.0. Geosci. Model Dev. 9, 2639–2663 (2016).

    • CAS
    • Google Scholar
  • 28.

    Bechtold, M. et al. PEAT-CLSM: a specific treatment of peatland hydrology in the NASA catchment land surface model. J. Adv. Model. Earth Syst. 11, 2130–2162 (2019).

    • Google Scholar
  • 29.

    Poulter, B. et al. Plant functional type mapping for earth system models. Geosci. Model Dev. 4, 993–1010 (2011).

    • Google Scholar
  • 30.

    Abramowitz, G., Leuning, R., Clark, M. & Pitman, A. Evaluating the performance of land surface models. J. Clim. 21, 5468–5481 (2008).

    • Google Scholar
  • 31.

    Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).

    • CAS
    • Google Scholar
  • 32.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    • Google Scholar
  • 33.

    Yurova, A., Tolstykh, M., Nilsson, M. & Sirin, A. Parameterization of mires in a numerical weather prediction model. Water Resour. Res. 50, 8982–8996 (2014).

    • Google Scholar
  • 34.

    Lemordant, L., Gentine, P., Swann, A. S., Cook, B. I. & Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl Acad. Sci. USA 115, 4093–4098 (2018).

    • CAS
    • Google Scholar
  • 35.

    Ewers, B. E., Gower, S. T., Bond-Lamberty, B. & Wang, C. K. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant Cell Environ. 28, 660–678 (2005).

    • Google Scholar
  • 36.

    Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    • CAS
    • Google Scholar
  • 37.

    Trenberth, K. E. Atmospheric moisture recycling: role of advection and local evaporation. J. Clim. 12, 1368–1381 (1999).

    • Google Scholar
  • 38.

    Ford, T. W. & Frauenfeld, O. W. Surface–atmosphere moisture interactions in the frozen ground regions of Eurasia. Sci. Rep. 6, 19163 (2016).

    • CAS
    • Google Scholar
  • 39.

    Konings, A. G., Katul, G. G. & Porporato, A. The rainfall–no rainfall transition in a coupled land-convective atmosphere system. Geophys. Res. Lett. 37, L14401 (2010).

    • Google Scholar
  • 40.

    Sikma, M. & Vilà-Guerau de Arellano, J. Substantial reductions in cloud cover and moisture transport by dynamic plant responses. Geophys. Res. Lett. 46, 1870–1878 (2019).

    • Google Scholar
  • 41.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    • CAS
    • Google Scholar
  • 42.

    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    • CAS
    • Google Scholar
  • 43.

    Alekseychik, P. et al. Surface energy exchange in pristine and managed boreal peatlands. Mires Peat 20, 1–26 (2018).

    • Google Scholar
  • 44.

    Zoltai, S. C. & Vitt, D. H. Canadian wetlands: environmental gradients and classification. Vegetatio 118, 131–137 (1995).

    • Google Scholar
  • 45.

    Sulman, B. N. et al. CO2 fluxes at northern fens and bogs have opposite responses to inter-annual fluctuations in water table. Geophys. Res. Lett. 37, L19702 (2010).

    • Google Scholar
  • 46.

    Girardin, M. P. et al. Negative impacts of high temperatures on growth of black spruce forests intensify with the anticipated climate warming. Glob. Change Biol. 22, 627–643 (2016).

    • Google Scholar
  • 47.

    Clenciala, E., Kucera, J., Ryan, M. G. & Lindroth, A. Water flux in boreal forest during two hydrologically contrasting years; species specific regulation of canopy conductance and transpiration. Ann. Sci. For. 55, 47–61 (1998).

    • Google Scholar
  • 48.

    Helbig, M., Humphreys, E. R. & Todd, A. Contrasting temperature sensitivity of CO2 exchange in peatlands of the Hudson Bay Lowlands, Canada. J. Geophys. Res. Biogeosci. 124, 2126–2143 (2019).

    • CAS
    • Google Scholar
  • 49.

    Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

    • CAS
    • Google Scholar
  • 50.

    Charman, D. J. Summer water deficit variability controls on peatland water-table changes: implications for Holocene palaeoclimate reconstructions. The Holocene 17, 217–227 (2007).

    • Google Scholar
  • 51.

    Rydin, H. Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45, 374–379 (1985).

    • Google Scholar
  • 52.

    Waddington, J. M. et al. Hydrological feedbacks in northern peatlands. Ecohydrol. 8, 113–127 (2014).

    • Google Scholar
  • 53.

    Waddington, J. M., Kellner, E., Strack, M. & Price, J. S. Differential peat deformation, compressibility, and water storage between peatland microforms: Implications for ecosystem function and development. Water Resour. Res. 46, W07538 (2010).

  • 54.

    Nijp, J. J. et al. Including hydrological self-regulating processes in peatland models: Effects on peatmoss drought projections. Sci. Total Environ. 580, 1389–1400 (2017).

    • CAS
    • Google Scholar
  • 55.

    Heijmans, M. M. P. D., van der Knaap, Y. A. M., Holmgren, M. & Limpens, J. Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Glob. Change Biol. 19, 2240–2250 (2013).

    • Google Scholar
  • 56.

    Sulman, B. N., Desai, A. R. & Mladenoff, D. J. Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems 16, 491–507 (2013).

    • CAS
    • Google Scholar
  • 57.

    Carpino, O. A., Berg, A. A., Quinton, W. L. & Adams, J. R. Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).

    • Google Scholar
  • 58.

    Buermann, W., Bikash, P. R., Jung, M., Burn, D. H. & Reichstein, M. Earlier springs decrease peak summer productivity in North American boreal forests. Environ. Res. Lett. 8, 024027 (2013).

    • Google Scholar
  • 59.

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).

    • Google Scholar
  • 60.

    Hollinger, D. Y. et al. Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Glob. Change Biol. 5, 891–902 (1999).

    • Google Scholar
  • 61.

    Papale, D. et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).

    • CAS
    • Google Scholar
  • 62.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    • Google Scholar
  • 63.

    Humphreys, E. R. et al. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands. J. Geophys. Res. Biogeosciences 111, G04011 (2006).

    • Google Scholar
  • 64.

    Verma, S. B. Aerodynamic Resistances to Transfers of Heat, Mass and Momentum (eds Black, T. A. et al.) Vol. 177, 13–20 (International Association of Hydrological Sciences, 1989); http://hydrologie.org/redbooks/a177/iahs_177_0013.pdf

  • 65.

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    • Google Scholar
  • 66.

    Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M. & Roulet, N. T. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J. Ecol. 90, 25–36 (2002).

    • Google Scholar
  • 67.

    Kelliher, F. M., Leuning, R., Raupach, M. R. & Schulze, E.-D. Maximum conductances for evaporation from global vegetation types. Agric. For. Meteorol. 73, 1–16 (1995).

    • Google Scholar
  • 68.

    Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H v006: MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid (NASA, 2015); https://doi.org/doi:10.5067/MODIS/MOD15A2H.006

  • 69.

    Mao, J. & Yan, B. Global Monthly Mean Leaf Area Index Climatology, 1981–2015 (ORNL DAAC, 2019); https://doi.org/10.3334/ORNLDAAC/1653

  • 70.

    Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmospheres 122, 2061–2079 (2017).

    • Google Scholar
  • 71.

    Jung, M. et al. The FLUXCOM ensemble of global land-atmosphere energy fluxes. Sci. Data 6, 74 (2019).

    • Google Scholar
  • 72.

    Helbig, M. Analysis of Boreal Peatland and Forest Evapotranspiration (Zenodo, 2020); https://doi.org/10.5281/zenodo.3653056


  • Source: Ecology - nature.com

    Urban biodiversity management using evolutionary tools

    Organizing principles for vegetation dynamics