in

Insights into a 429-million-year-old compound eye

  • 1.

    Barrande, J. Système Silurien du Centre de la Bohème, p. 253. (Prague, Paris, 1852–1881).

  • 2.

    Hughes, N. C., Kříž, J., Macquaker, J. H. S. & Huff, W. D. The depositional environment and taphonomy of the Homerian Aulacopleura shales fossil assemblage near Loděnice, Czech Republic (Prague Basin, Perunican microcontinent). Bull. Geosci. 89, 219–238 (2014).

    Google Scholar 

  • 3.

    Hughes, N. C., Hong, P. S., Hou, J. B. & Fusco, G. The development of the Silurian trilobite Aulacopleura koninckii reconstructed by applying Inferred growth and segmentation dynamics: A case study in Paleo-Evo-Devo. Front. Ecol. Evol. 5, 1–12 (2017).

    Google Scholar 

  • 4.

    Moore, R. C., ed. Treatise on Invertebrate Paleontology [Part O—Arthropoda 1 (Trilobitomorpha)]. (Geol. Soc. America and Univ. Kansas Press, 1959).

  • 5.

    Fortey, R. A. & Owens, R. M. Evolutionary trends in invertebrates. Chapter 5. Trilobites. In Evolutionary Trends (ed. K. J. McNamara) 121–142 (Belhaven Press, London, 1990).

  • 6.

    Fusco, G., Hughes, N. C., Webster, M. & Minelli, A. Exploring developmental modes in a fossil arthropod: Growth and trunk segmentation of the trilobite Aulacopleura koninckii. Am. Nat. 163, 167–183 (2003).

    PubMed  Google Scholar 

  • 7.

    Fusco, G., Hong, P. S. & Hughes, N. C. Axial growth gradients across the postprotaspid ontogeny of the Silurian trilobite Aulacopleura koninckii. Paleobiology 42, 426–438 (2016).

    Google Scholar 

  • 8.

    Seilacher, A. Begriff und Bedeutung der Fossil-Lagerstätten. [Concept and significance of fossil-Lagerstätten]. Neues Jahrbuch für Geologie und Paläontologie (1970).

  • 9.

    Seilacher, A., Reif, W.-E. & Westphal, F. Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 5–23 (1985).

  • 10.

    Cong, P.-Y., Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Ma, X.-Y., Hou, X.-G., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).

    ADS  CAS  PubMed  Google Scholar 

  • 12.

    Tanaka, G. et al. Mineralized rods and conessuggest colour vision in a 300 Myr-old fossil fish. Nat. Commun. 5, 5920 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Ma, X.-Y., Edgecombe, G. D., Hou, X.-G., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).

    CAS  PubMed  Google Scholar 

  • 14.

    Strausfeld, N. F., Ma, X.-Y. & Edgecombe, G. D. Fossils and the evolution of arthropod brains. Curr. Biol. 26, R989-1000 (2016).

    CAS  PubMed  Google Scholar 

  • 15.

    Tanaka, G., Parker, A. R., Siveter, D. J., Maeda, H. & Furutani, M. An exceptionally well-preserved Eocene dolichopodid fly eye: Function and evolutionary significance. Proc. R. Soc. B 276, 1015–1019 (2009).

    PubMed  Google Scholar 

  • 16.

    Schoenemann, B. & Clarkson, E. N. Discovery of some 400 million year-old sensory structures in the compound eyes of trilobites. Sci. Rep. 3, 1429 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Vannier, J., Schoenemann, B., Gillot, T., Charbonnier, S., & Clarkson, E.N.K. Exceptional preservation of eye structure in arthropod visual predators from the Middle Jurassic. Nat. Comm. 7, 1–9 (2016).

  • 18.

    Schoenemann, B., Pärnaste, H. & Clarkson, E. N. K. Structure and function of a compound eye, more than half a billion years old. PNAS 114, 13489–13494 (2017).

    CAS  PubMed  Google Scholar 

  • 19.

    Schoenemann, B., Poschmann, M. & Clarkson, E. N. K. Insights into the 400 million-year-old eyes of giant sea scorpions (Eurypterida) suggest the structure of Palaeozoic compound eyes. Sci. Rep. 9, 1–10 (2019).

    ADS  CAS  Google Scholar 

  • 20.

    Bergström, J. Classification of olenellid trilobites and some Balto-Scandian species. Nor. Geol. Tidsskr. 53, 283–314 (1973).

    Google Scholar 

  • 21.

    Nilsson, D. E. Optics and evolution of the compound eye. In Facets of Vision (eds. S. G. Stavenga & R. C. Hardie) 30–73 (Springer, Berlin, 1989).

  • 22.

    Nilsson, D. E. Eye evolution and its functional basis. Vis. Neurosci. 30, 5–20 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 23.

    Strausfeld, N. J. et al. Arthropod eyes: The early Cambrian fossil record and divergent evolution of visual systems. Arthropod Struct. Dev. 45, 152–172 (2016).

    PubMed  Google Scholar 

  • 24.

    Nilsson, D. E. Evolutionary links between apposition and superposition optics in crustacean eyes. Nature 302(5911), 818–821 (1983).

    ADS  Google Scholar 

  • 25.

    Nilsson, D. E., Hallberg, E. & Elofsson, R. The ontogenetic development of refracting superposition eyes in crustaceans: Transformation of optical design. Tissue Cell 18, 509–519 (1986).

    CAS  PubMed  Google Scholar 

  • 26.

    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology. (Princeton University Press, Princeton, 2014), pp. 405.

  • 27.

    Müller J. Zur vergleichenden Physiologie des Gesichtssinnes des Menschen und der Thiere. [Contributions to the comparative physiology of the sense of sight of humans and animals]. (Cnobloch, Leipzig, 1826).

  • 28.

    Exner, S. Die Physiologie der facettirten Augen von Krebsen und Insecten: eine Studie. [Physiology of the facetted eyes of crustaceans and insects]. (Franz Deuticke, Berlin, 1891), pp. 232.

  • 29.

    Gaten, E. Optics and phylogeny: Is there an insight? The evolution of superposition. Contrib. Zool. 67, 223–235 (1998).

    Google Scholar 

  • 30.

    Towe, K. M. Trilobite eyes: Calcified lenses in vivo. Science 179, 1007–1009 (1973).

    ADS  CAS  PubMed  Google Scholar 

  • 31.

    Lee, M. R., Torney, C. & Owen, A. W. Magnesium-rich intralensar structures in schizochroal trilobite eyes. Palaeontology 50, 1031–1037 (2007).

    Google Scholar 

  • 32.

    Lee, M. R., Torney, C. & Owen, A. W. Biomineralisation in the Palaeozoic oceans: evidence for simultaneous crystallisation of high and low magnesium calcite by phacopine trilobites. Chem. Geol. 314, 33–44 (2012).

    ADS  Google Scholar 

  • 33.

    Torney, C., Lee, M. R. & Owen, A. W. An electron backscatter diffraction study of Geesops: a broader view of trilobite vision? Adv. Trilobite Res. 389 (2008).

  • 34.

    Torney, C., Lee, M. R. & Owen, A. W. Microstructure and growth of the lenses of schizochroal trilobite eyes. Palaeontology 57, 783–799 (2914).

  • 35.

    Clarkson, E. N. & Levi-Setti, R. Trilobite eyes and the optics of Des Cartes and Huygens. Nature 254, 663 (1975).

    ADS  CAS  PubMed  Google Scholar 

  • 36.

    Clarkson, E. N. K., Horváth, G. & Levi-Setti, R. The eyes of trilobites; the oldest preserved visual system. Arthropod Struct. Dev. 35, 247–259 (2006).

    PubMed  Google Scholar 

  • 37.

    Legg, D. A., Sutton, M. D. & Edgecombe, G. D. Arthropod fossil data increase congruence of morphological and molecular phylogenies. Nat. Commun. 4, 2485 (2013).

    ADS  PubMed  Google Scholar 

  • 38.

    Boudreaux, H. B. Arthropod Phylogeny, with Special Reference to Insects. (Wiley, New York, 1979).

  • 39.

    Scholtz, G. & Edgecombe, G. D. The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev. Genes Evol. 216, 395–415 (2006).

    PubMed  Google Scholar 

  • 40.

    Scholtz, G., Staude, A., & Dunlop, J. A. (2019). Trilobite compound eyes with crystalline cones and rhabdoms show mandibulate affinities. Nat. Commun. 10, 2503 (2019).

  • 41.

    Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819 (2001).

    ADS  CAS  PubMed  Google Scholar 

  • 42.

    Speiser, D. I., Eernisse, D. J., & Johnsen, S. A chiton uses aragonite lenses to form images. Curr. Biol. 21, 665–670 (2911).

  • 43.

    Li, L. et al. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350, 952–956 (2015).

    CAS  PubMed  Google Scholar 

  • 44.

    Lindgren, J. et al. Fossil insect eyes shed light on trilobite optics and the arthropod pigment screen. Nature 573, 122–125 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 45.

    Snyder, A. W. The acuity of compound eyes: Physical limitations and design. J. Comp. Physiol. A 116, 161–182 (1977).

    Google Scholar 

  • 46.

    Snyder, A. W. Physics of vision in compound eyes. In Comparative physiology and evolution of vision in invertebrates (ed. H. J. Autrum) 225–313 (Springer, Berlin, 1979).

  • 47.

    Nilsson, D. E. & Odselius, R. A new mechanism for light-dark adaptation in the Artemia compound eye (Anostraca, Crustacea). J. Comp. Physiol. A 143, 389–399 (1981).

    Google Scholar 

  • 48.

    Young, S. & Downing, A. C. The receptive fields of Daphnia ommatidia. J. Exp. Biol. 64, 185–202 (1976).

    CAS  PubMed  Google Scholar 

  • 49.

    Sandeman, D. C. Regionalization in the eye of the crab Leptograpsus variegatus: Eye movements evoked by a target moving in different parts of the visual field. J. comp. Physiol. 123, 299–306 (1978).

    Google Scholar 

  • 50.

    Zeil, J. & Hemmi, J. M. The visual ecology of fiddler crabs. J. Comp. Physiol. A 192, 1–25 (2006).

    ADS  Google Scholar 

  • 51.

    Doughtie, D. G. & Rao, K. R. Ultrastructure of the eyes of the grass shrimp, Palaemonetes pugio. Cell Tissue Res. 238, 271–288 (1984).

    Google Scholar 

  • 52.

    Welsh, B. L. The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56, 513–530 (1975).

    Google Scholar 

  • 53.

    Ball, E. E., Kao, L. C., Stone, R. C. & Land, M. F. Eye structure and optics in the pelagic shrimp Acetes sibogae (Decapoda, Natantia, Sergestidae) in relation to light-dark adaptation and natural history. Philos. Trans. R. Soc. Lond. B Biol. Sci. 313, 251–270 (1986).

  • 54.

    Hanamura, Y. Occurrence of Acetes sibogae Hansen (Crustacea: Decapoda: Sergestidae) in Western Australia, with notes on the northern Australian population. Rec. West Aus. Mus. 19, 465–468 (1999).

    Google Scholar 

  • 55.

    Schaffmeister, B. E., Hiddink, J. G. & Wolff, W. J. Habitat use of shrimps in the intertidal and shallow subtidal seagrass beds of the tropical Banc d’Arguin, Mauritania. J. Sea Res. 55, 230–243 (2006).

    ADS  Google Scholar 

  • 56.

    Vogt, K. Ray path and reflection mechanisms in crayfish eyes. Z. Naturforsch. C 32, 466–468 (1977).

    Google Scholar 

  • 57.

    Vogt, K. Die Spiegeloptik des Flusskrebsauges. [Mirror optics of crayfish]. J. Comp. Physiol. 135, 1–19 (1980).

  • 58.

    Land, M. E. Crustacea, in Photoreception and vision in invertebrates (ed. Ali, M. A.), 401–438, (Plenum, London, 1984).

  • 59.

    Meyer-Rochow, V. B. The crustacean eye: Dark/light adaptation, polarization sensitivity, flicker fusion frequency, and photoreceptor damage. Zool. Sci. 18, 1175–1198 (2001).

    CAS  PubMed  Google Scholar 

  • 60.

    Land, M. F. The eyes of hyperiid amphipods: Relations of optical structure to depth. J. Comp. Physiol. A. 164, 751–762 (1989).

    Google Scholar 

  • 61.

    Nilsson, D. E. & Nilsson, H. L. A crustacean compound eye adapted for low light intensities (Isopoda). J. Comp. Physiol. 143, 503–510 (1981).

    Google Scholar 

  • 62.

    Fahrenbach, W. H. The morphology of the eyes of Limulus II. Ommatidia of the compound eye. Z. Zellforsch. 93, 451–483 (1969).

  • 63.

    Paulus H. F. The compound eyes of apterygote insects. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 3–20 (Clarendon Press, Oxford, 1975).

  • 64.

    Horridge, G. A. & Barnard, P. B. T. Movement of palisade in locust retinula cells when illuminated. J. Cell Sci. 3, 131–136 (1965).

    Google Scholar 

  • 65.

    Snyder A.W. Optical properties of invertebrate physiology. In The Compound Eye and Vision of Insects. (ed. G. A. Horridge) 154–179 (Clarendon Press, Oxford, 1975).

  • 66.

    Lindgren, J. et al. Molecular preservation of the pigment melanin in fossil melanosomes. Nat. Commun. 3, 824 (2012).

    ADS  PubMed  Google Scholar 

  • 67.

    Vinther, J., Briggs, D. E. G., Prum, R. O. & Saranathan, V. The colour of fossil feathers. Biol. Lett. 4, 522–525 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Li, Q. et al. Plumage color patterns of an extinct dinosaur. Science 327, 1369–1372 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 69.

    Vinther, J. A guide to the field of palaeo colour: Melanin and other pigments can fossilize: Reconstructing colour patterns from ancient organisms can give new insights to ecology and behavior. BioEssays 37, 643–656 (2015).

    PubMed  Google Scholar 

  • 70.

    Lindgren, J. et al. Interpreting melanin-based coloration through deep time: A critical review. Proc. R. Soc. B. 282(1813), 20150614 (2015).

    PubMed  Google Scholar 

  • 71.

    Kirschfeld, K. The visual system of Musca: Studies on optics, structure and function. In Information Processing in the Visual Systems of Anthropods (ed. Wehner R.) 61–74 (Springer, Berlin, 1972).

  • 72.

    Kirschfeld, K. & Franceschini, N. Optische Eigenschaften der Ommatidien im Komplexauge von Musca. [Optical properties of the ommatidia in the compound eyes of Musca]. Kybernetik 5, 47–52 (1968).

  • 73.

    Stavenga, D. G. The neural superposition eye and its optical demands. J. Comp. Physiol. 102, 297–304 (1975).

    Google Scholar 

  • 74.

    McIntyre, P. & Caveney, S. Graded-index optics are matched to optical geometry in the superposition eyes of scarab beetles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 311, 237–269 (1985).

  • 75.

    Nilsson, D. E. & Ro, A. I. Did neural pooling for night vision lead to the evolution of neural superposition eyes?. J. Comp. Physiol. A 175, 289–302 (1994).

    Google Scholar 

  • 76.

    van Straelen, V. Description de crustaceés décapodes macroures nouveaux des terrains secondaires. Ann. Soc. roy. Zool. Belg. 53, 84–93 (1923).

    Google Scholar 

  • 77.

    Land, M. F. & Nilsson, D.-E. Animal Eyes. (Oxford University Press, Oxford, 2012).

  • 78.

    Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. A 160, 11–21 (1987).

    Google Scholar 

  • 79.

    Greiner, B. Visual adaptations in the night active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).

    PubMed  Google Scholar 

  • 80.

    Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).

    PubMed  Google Scholar 

  • 81.

    Meyer-Rochow, V. B. & Walsh, S. The eyes of mesopelagic crustaceans: I. Gennadas sp. (Penaeidae). Cell Tissue Res. 184, 87–101 (1977).

  • 82.

    Meyer-Rochow, V. B. The eyes of mesopelagic crustaceans. Cell Tissue Res. 186, 337–349 (1978).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    Damage severity of wood-destroying insects according to the Bevan damage classification system in log depots of Northwest Turkey

    Changes in the core endophytic mycobiome of carrot taproots in response to crop management and genotype