in

Intensive farming drives long-term shifts in avian community composition

  • 1.

    Kremen, C. & Merenlender, A. M. Landscapes that work for biodiversity and people. Science 362, eaau6020 (2018).

    • Google Scholar
  • 2.

    Kremen, C. Reframing the land-sparing/land-sharing debate for biodiversity conservation. Ann. NY Acad. Sci. 1355, 52–76 (2015).

    • Google Scholar
  • 3.

    Frishkoff, L. O. et al. Loss of avian phylogenetic diversity in neotropical agricultural systems. Science 345, 1343–1346 (2014).

    • Google Scholar
  • 4.

    Mendenhall, C. D., Shields-Estrada, A., Krishnaswami, A. J. & Daily, G. C. Quantifying and sustaining biodiversity in tropical agricultural landscapes. Proc. Natl Acad. Sci. USA 113, 14544–14551 (2016).

    • Google Scholar
  • 5.

    Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evol. 1, 1129–1135 (2017).

    • Google Scholar
  • 6.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    • Google Scholar
  • 7.

    Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

    • Google Scholar
  • 8.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    • Google Scholar
  • 9.

    Karp, D. S. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347 (2013).

    • Google Scholar
  • 10.

    Karp, D. S., Ziv, G., Zook, J., Ehrlich, P. R. & Daily, G. C. Resilience and stability in bird guilds across tropical countryside. Proc. Natl Acad. Sci. USA 108, 21134–21139 (2011).

    • Google Scholar
  • 11.

    Ranganathan, J., Daniels, R. J. R., Chandran, M. D. S., Ehrlich, P. R. & Daily, G. C. Sustaining biodiversity in ancient tropical countryside. Proc. Natl Acad. Sci. USA 105, 17852–17854 (2008).

    • Google Scholar
  • 12.

    Fukami, T. & Wardle, D. A. Long-term ecological dynamics: reciprocal insights from natural and anthropogenic gradients. Proc. R. Soc. B 272, 2105–2115 (2005).

    • Google Scholar
  • 13.

    De Palma, A. et al. Chapter four: challenges with inferring how land-use affects terrestrial biodiversity: study design, time, space and synthesis. Adv. Ecol. Res. 58, 163–199 (2018).

    • Google Scholar
  • 14.

    Essl, F. et al. Delayed biodiversity change: no time to waste. Trends Ecol. Evol. 30, 375–378 (2015).

    • Google Scholar
  • 15.

    Hastings, A. et al. Transient phenomena in ecology. Science 361, eaat6412 (2018).

    • Google Scholar
  • 16.

    Essl, F. et al. Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Divers. Distrib. 21, 534–547 (2015).

    • Google Scholar
  • 17.

    Vellend, M. et al. Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87, 542–548 (2006).

    • Google Scholar
  • 18.

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).

    • Google Scholar
  • 19.

    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).

    • Google Scholar
  • 20.

    Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    • Google Scholar
  • 21.

    Gilbert, B. & Levine, J. M. Plant invasions and extinction debts. Proc. Natl Acad. Sci. USA 110, 1744–1749 (2013).

    • Google Scholar
  • 22.

    Bell, G. & Gonzalez, A. Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332, 1327–1330 (2011).

    • Google Scholar
  • 23.

    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).

    • Google Scholar
  • 24.

    MacLean, S. A., Rios Dominguez, A. F., de Valpine, P. & Beissinger, S. R. A century of climate and land-use change cause species turnover without loss of beta diversity in California’s Central Valley. Glob. Change Biol. 24, 5882–5894 (2018).

    • Google Scholar
  • 25.

    Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).

    • Google Scholar
  • 26.

    Pressey, R. L., Cabeza, M., Watts, M. E., Cowling, R. M. & Wilson, K. A. Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592 (2007).

    • Google Scholar
  • 27.

    Tulloch, V. J. D. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).

    • Google Scholar
  • 28.

    de Camino, R., Segura, O., Guillermo Arias, L. & Perez, I. Costa Rica Forest Strategy and the Evolution of Land Use: Evaluation Country Case Study Series (World Bank, 2000).

  • 29.

    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25, 153–160 (2010).

    • Google Scholar
  • 30.

    Sánchez, J. E., Naoki, K. & Zook, J. New information about Costa Rican birds. Ornitol. Neotrop. 9, 99–102 (1998).

    • Google Scholar
  • 31.

    Rosero-Bixby, L., Maldonado-Ulloa, T. & Bonilla-Carrión, R. Bosque y población en la Península de Osa, Costa Rica [Forest and Population in the Osa Peninsula, Costa Rica]. Rev. Biol. Trop. 50, 585–598 (2002).

    • Google Scholar
  • 32.

    Lobo, J. & Bolaños, F. Historia natural de Golfi to Costa Rica (Instituto Nacional de Biodiversidad, 2005).

  • 33.

    Sandoval, L. et al. Recent records of new and rare bird species in Costa Rica. Bull. Br. Ornithol. Club 130, 237–245 (2010).

    • Google Scholar
  • 34.

    Sandoval, L. et al. Range expansion and noteworthy records of Costa Rican birds (Aves). Check List 14, 141–151 (2018).

    • Google Scholar
  • 35.

    Frishkoff, L. O. et al. Climate change and habitat conversion favour the same species. Ecol. Lett. 19, 1081–1090 (2016).

    • Google Scholar
  • 36.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    • Google Scholar
  • 37.

    Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).

    • Google Scholar
  • 38.

    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2016).

  • 39.

    Simpson, D., Rue, H., Riebler, A., Martins, T. G. & Sørbye, S. H. Penalising model component complexity: a principled, practical approach to constructing priors. Stat. Sci. 32, 1–28 (2017).

    • Google Scholar
  • 40.

    Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).

    • Google Scholar
  • 41.

    Oksanen, J. Vegan: ecological diversity. R package version 2.4-4 https://cran.r-project.org/web/packages/vegan/ (2017).

  • 42.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    • Google Scholar
  • 43.

    O’Hara, R. B. & Kotze, D. J. Do not log-transform count data. Methods Ecol. Evol. 1, 118–122 (2010).

    • Google Scholar
  • 44.

    IUCN. The IUCN Red List of Threatened Species. version 2019-1 https://www.iucnredlist.org/ (2019).

  • 45.

    Stiles, F. G. & Skutch, A. F. A Guide to the Birds of Costa Rica (Cornell Univ. Press, 1989).

  • 46.

    Justice, C. O. et al. The Moderate Resolution Imaging Spectroradiometer (MODIS): land remote sensing for global change research. IEEE Trans. Geosci. Remote Sens. 36, 1228–1249 (1998).

    • Google Scholar
  • 47.

    Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol. 14, e1002415 (2016).

    • Google Scholar
  • 48.

    Anderson, C. B. Biodiversity monitoring, earth observations and the ecology of scale. Ecol. Lett. 21, 1572–1585 (2018).

    • Google Scholar
  • 49.

    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    • Google Scholar
  • 50.

    Wan, Z., Hook, S. & Hulley, G. MOD11A1 v006: MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km SIN Grid https://doi.org/10.5067/MODIS/MOD11A1.006 (NASA, 2015).

  • 51.

    Myneni, R. B., Knyazikhin, Y. & Park, T. MCD15A3H v006: MODIS/Terra+Aqua Leaf Area Index/FPAR 4-day L4 Global 500m SIN Grid https://doi.org/10.5067/MODIS/MCD15A3H.006 (2015).

  • 52.

    Brawn, J. D., Benson, T. J., Stager, M., Sly, N. D. & Tarwater, C. E. Impacts of changing rainfall regime on the demography of tropical birds. Nat. Clim. Change 7, 133–136 (2017).

    • Google Scholar
  • 53.

    Royle, J. A. & Dorazio, R. M. Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities (Academic, 2008).


  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste