in

The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction

[adace-ad id="91168"]
  • 1.

    Shen, S. et al. A sudden end-Permian mass extinction in South China. Geol. Soc. Am. Bull. 131, 205–223 (2018).

    • Article
    • Google Scholar
  • 2.

    Payne, J. L. & Clapham, M. F. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Ann. Rev. Earth Planet. Sci. 40, 89–111 (2012).

  • 3.

    Ward, P. D. et al. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307, 709–714 (2005).

  • 4.

    Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: Sedimentological and taphonomic evidence for drought-induced die-offs at the Permo–Triassic boundary in the main Karoo Basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 (2014).

    • Article
    • Google Scholar
  • 5.

    Schneider, J. W. et al. Late Paleozoic–early Mesozoic continental biostratigraphy. PalaeoWorld, https://doi.org/10.1016/j.palwor.2019.09.001 (2019).

  • 6.

    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Comm. 10, 385 (2019).

  • 7.

    Burgess, S. D. & Bowring, S. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

  • 8.

    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Comm. 8, 164 (2017).

  • 9.

    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction furing the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).

  • 10.

    Hotskinski, R. M., Bice, K. L., Kump, L. R., Najjar, R. G. & Arthur, M. A. Ocean stagnation and end Permian anoxia. Geology 29, 7–10 (2001).

  • 11.

    Schaal, E. K., Meyer, K. M., Lau, K., Silva-Tamayo, J. C., & Payne, J. L. in Volcanism and Global Environmental Change (eds Schmidt, A., Kristad, K. E., and Elkins-Tanton, L. T.) 275–290 (Cambridge University Press, Cambridge, 2015).

  • 12.

    Zhang, F. et al. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction. Sci. Adv. 4, e1602921 (2018).

  • 13.

    Rey, K. et al. Global climate perturbations during the Permo-Triassic mass extinctions recorded by continental tetrapods from South Africa. Gond. Res. 3, 384–396 (2016).

  • 14.

    MacLeod, K. G., Quinton, P. C. & Bassett, D. J. Warming and increased aridity during the earliest Triassic in the Karoo Basin, South Africa. Geology 45, 483–486 (2017).

  • 15.

    Roopnarine, P. D., Angielczyk, K. D., Weik, A., & Dineen, A. Ecological persistence, incumbency and reorganization in the Karoo Basin during the Permian-Triassic transition. Ear. Sci. Rev. https://doi.org/10.1016/j.earscire2018.10.014 (2018).

  • 16.

    Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo Basin of South Africa. Geology 29, 1147–1150 (2001).

  • 17.

    Viglietti, P. A., Rubidge, B. S., & Smith, R. M. H. New Late Permian tectonic model for South Africa’s Karoo Basin: foreland tectonics and climate change before the end-Permian crisis. Sci. Rep. https://doi.org/10.1038/s41598-017-09853-3 (2017).

  • 18.

    Botha, J. et al. New geochemical and palaeontological data from the Permian-Triassic boundary in the South African Karoo Basin test the synchronicity of terrestrial and marine extinctions. Palaeo Palaeo Palaeo 540, 109467 (2020).

    • Article
    • Google Scholar
  • 19.

    Smith, R. M. H. Changing fluvial environments across the Permian–Triassic boundary in the Karoo Basin, South Africa, and possible causes of tetrapod extinctions. Palaeo Palaeo Palaeo 117, 81–104 (1995).

    • Article
    • Google Scholar
  • 20.

    Gastaldo, R. A. et al. Is the vertebrate defined Permian–Triassic Boundary in the Karoo Basin, South Africa, the terrestrial expression of the End Permian marine event? Geology 43, 939–942 (2015).

  • 21.

    Gastaldo, R. A., Neveling, J., Geissman, J. W. & Kamo, S. L. A Lithostratigraphic and Magnetostratigraphic Framework in a Geochronologic Context for a Purported Permian–Triassic Boundary Section at Old (West) Lootsberg Pass, Karoo Basin, South Africa. Geol. Soc. Am. Bull. 130, 1411–1438 (2018).

  • 22.

    Broom, R. On the Permian and Triassic faunas of South Africa. Geol. Mag. Dec. 5, 29–30 (1906).

  • 23.

    Rubidge, B. S., ed. Biostratigraphy of the Beaufort Group (Karoo Supergroup). Geol. Surv. S. Afr. Biostrat. Ser. 1, 1–46 (1995).

  • 24.

    Day, M. O. et al. When and how did the terrestrial mid-Permian mass extinction occur? Evidence from the tetrapod record of the Karoo Basin, South Africa. Proc. Roy. Soc. B 282, 20150834 (2015).

  • 25.

    Lucas, S. G. Permian Tetrapod Extinction Events. Ear. Sci. Rev. 170, 31–60 (2017).

  • 26.

    Rubidge, B. S., Erwin, D. H., Ramezani, J., Bowring, S. A. & de Klerk, W. J. High-precision temporal calibration of Late Permian vertebrate biostratigraphy. U-Pb zircon constraints from the Karoo Supergroup, South Africa. Geology 41, 363–366 (2013).

  • 27.

    Viglietti, P. A. et al. The Daptocephalus Assemblage Zone (Lopingian), South Africa: A proposed biostratigraphy based on a new compilation of stratigraphic range. J. Afr. Ear. Sci. 113, 153–164 (2016).

    • Article
    • Google Scholar
  • 28.

    Gastaldo, R. A., Neveling, J., Geissman, J. W. & Looy, C. V. Testing the Daptocephalus and Lystrosaurus Assemblage Zones in a lithostratographic, magnetostratigraphic, and palynological framework in the Free State, South Africa. PALAIOS 34, 542–561 (2019).

  • 29.

    Botha-Brink, J., Huttenlocker, A. K., & Modesto, S. P. in Early Evolutionary History of the Synapsida, Vertebrate Paleobiology and Paleoanthropology (eds Kammerer, C. F., Angielczyk, K. D., & Fröbisch, J.) 289–304 (Springer, Dordrecht, 2014).

  • 30.

    Pace, D. W., Gastaldo, R. A. & Neveling, J. Early Triassic aggradational and degradational landscapes of the Karoo basin and evidence for climate oscillation following the P-Tr Event. J. Sed. Res. 79, 316–331 (2009).

  • 31.

    Botha, J. & Smith, R. M. H. Rapid vertebrate recuperation in the Karoo Basin following the End-Permian extinction. J. Afr. Ear. Sci. 45, 502–514 (2006).

    • Article
    • Google Scholar
  • 32.

    Viglietti, P. A., Smith, R. M. H. & Rubidge, B. S. Changing palaeoenvironments and tetrapod populations in the Daptocephalus Assemblage Zone (Karoo Basin, South Africa) indicate early onset of the Permo-Triassic mass extinction. J. Afr. Ear. Sci. 138, 102–111 (2018).

    • Article
    • Google Scholar
  • 33.

    Li, J., Gastaldo, R. A., Neveling, J. & Geissman, J. W. Siltstones across the Daptocephalus (Dicynodon) and Lystrosaurus Assemblage Zones, Karoo Basin, South Africa, show no evidence for aridification. J. Sed. Res. 87, 653–671 (2017).

  • 34.

    Szurlies, M. Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe: Geol. Soc. London Spec. Pub. https://doi.org/10.1144/SP376.7. (2013).

  • 35.

    Hounslow, M. W. & Balabanov, Y. P. A geomagnetic polarity time scale for the Permian, calibrated to stage boundaries. Geol. Soc. London Spec. Pub. https://doi.org/10.1144/SP450.8 (2016).

  • 36.

    Wang, X. et al. Mercury anomalies across the end Permian mass extinction in South China from shallow and deep water depositional environments. Ear. Planet. Sci. Lett. 496, 159–167 (2018).

  • 37.

    Lindström, S. & McLoughlin, S. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Rev. Palaeobot. Palynol. 145, 89–122 (2007).

    • Article
    • Google Scholar
  • 38.

    Shi, G. R., Waterhouse, J. B. & McLoughlin, S. The Lopingian of Australasia: a review of biostratigraphy, correlations, palaeogeography and palaeobiogeography. Geol. Jour. 43, 230–263 (2010).

    • Google Scholar
  • 39.

    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—An ancient biotic crisis with lessons for the present. Ear. Planet. Sci. Lett. 529, 115875 (2020).

  • 40.

    Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. https://doi.org/10.1130/B35355.1 (2019).

  • 41.

    Benton, M. J. & Newell, A. J. Impacts of global warming on Permo-Triassic terrestrial ecosystems. Gond. Res. 25, 1308–1337 (2014).

  • 42.

    Collinson, J. W., Hammer, W. R., Askin, R. A. & Elliot, D. H. Permian–Triassic boundary in the central Transantarctic Mountains, Antarctica. Geol. Soc. Am. Bull. 118, 747–763 (2006).

  • 43.

    Langer, M. C. The first record of dinocephalians in South America. Late Permian (Rio do Rasto Formation) of the Paraná Basin, Brazil. Neues Jahrb. Geol. PaläOntol. Abhand. 215, 69–95 (2000).

    • Article
    • Google Scholar
  • 44.

    Battail, B. Late Permian dicynodont fauna from Laos. Geol. Soc. Lond. Spec. Pub. 315, 33–40 (2009).

  • 45.

    Gupta, A. & Das, D. P. Report of Lystrosaurus cf. curvatus and L. cf. declivis from the Early Triassic Panchet Formation, Damodar Valley. Indian J. Geosci. 65, 119–130 (2011).

    • CAS
    • Google Scholar
  • 46.

    Battail, B. Les genres Dicynodon et Lystrosaurus (Therapsida, Dicynodontia) en Eurasie: Une mise au point. A review. Geobios 30, 39–48 (1997).

    • Article
    • Google Scholar
  • 47.

    Tong, J. et al. Triassic integrative stratigraphy and timescale of China. Sci. China Ear. Sci. 62, 189–222 (2019).

  • 48.

    Damiani, R., Neveling, J., Modesto, S. & Yates, A. Barendskraal, a diverse amniote locality from the Lystrosaurus Assemblage Zone, Early Triassic of South Africa. Palaeontol. Afr. 39, 53–62 (2003).

    • Google Scholar
  • 49.

    Abdala, F., Cisneros, J. C. & Smith, R. M. H. Faunal Aggregation in the Early Triassic Karoo Basin. Earliest evidence of shelter-sharing behavior among tetrapods? PALAIOS 21, 507–512 (2005).

  • 50.

    Botha-Brink, J., Huttenlocker, A., Angielczyk, K. D., Codron, D. & Ruta, M. Breeding young as a survival strategy during Earth’s greatest mass extinction. Sci. Rep. https://doi.org/10.1038/srep24053. (2016).

  • 51.

    Botha-Brink, J. & Angielczyk, K. D. Do extraordinarily high growth rates in Permo-Triassic dicynodonts (Therapsida, Anomodontia) explain their success before and after the end-Permian extinction? Zool. J. Linn. Soc. 160, 341–365 (2010).

    • Article
    • Google Scholar
  • 52.

    Laaß, M. et al. New insights into the respiration and metabolic physiology of Lystrosaurus. Acta Zool. 92, 363–371 (2010).

    • Article
    • Google Scholar
  • 53.

    Sidor, C. A. et al. Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 110, 8129–8133 (2013).

  • 54.

    Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil. Trans. Roy. Soc. A https://doi.org/10.1098/rsta.2017.0076 (2018).

  • 55.

    Ray, S., Cox, A. & Bandyopadhyay, S. Lystrosaurus murrayi (Therapsida, Dicynodontia): bone histology, growth and lifestyle adaptations. Palaeontol 48, 1169–1186 (2005).

    • Article
    • Google Scholar
  • 56.

    Huttenlocker, A. K. Body size reductions in nonmammalian eutheriodont therapsids (Synapsida) during the end-Permian mass extinction. PLoS ONE https://doi.org/10.1371/journal.pone.0087553 (2014).

  • 57.

    Botha-Brink, J. Burrowing in Lystrosaurus. preadaptation to a post-extinction environment? J. Vert. Paleontol. https://doi.org/10.1080/02724634.2017.1365080 (2017).

  • 58.

    Prevec, R., Gastaldo, R. A., Neveling, J., Reid, S. B. & Looy, C. V. An Autochthonous Glossoperid flora with Latest Permian palynomorphs and its depositional setting from the Dicynodon Assemblage Zone of the southern Karoo Basin, South Africa. Palaeo Palaeo Palaeo 292, 381–408 (2010).

    • Article
    • Google Scholar
  • 59.

    Gastaldo, R. A., Knight, C., Neveling, J. & Tabor, N. Late Permian Paleosols from Wapadsberg Pass, South Africa: implications for Changhsingian Climate. Geol. Soc. Am. Bull. 126, 665–679 (2014).

  • 60.

    Gastaldo, R. A. et al. Paleontology of the Blaauwater 67 Farm, South Africa: testing the Daptocephalus/Lystrosaurus Biozone Boundary in a Stratigraphic Framework. PALAIOS 34, 349–366 (2017).

  • 61.

    Mattinson, J. M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method. combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).

  • 62.

    Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 37, 485–494 (1973).

  • 63.

    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

  • 64.

    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. 4, 1889–1906 (1971).

    • ADS
    • Google Scholar
  • 65.

    Ludwig, K. R. User’s manual for Isoplot 3.76. A geochronological toolkit for Microsoft Excel. Berkeley Geochron. Cent. Spec. Publ. 4, 71 (2003).

    • Google Scholar
  • 66.

    Zijderveld, J. D. A. in Methods in Palaeomagnetism (eds Collinson, D. W., Creer, K. M. & Runcorn, S. K.) 254 (Elsevier, Amsterdam, 1967).

  • 67.

    Kirschvink, J. L. The least squares line and plane and the analysis of paleomagnetic data. Geophys. J. Roy. Astron. Soc. 62, 699–718 (1980).


  • Source: Ecology - nature.com

    Emissions of several ozone-depleting chemicals are larger than expected

    New sensor could help prevent food waste