in

Investigating the impact of captivity and domestication on limb bone cortical morphology: an experimental approach using a wild boar model

  • 1.

    Magny, M. Aux racines de l’Anthropocène: une crise écologique reflet d’une crise de l’homme (2019).

  • 2.

    Turcotte, M. M., Araki, H., Karp, D. S., Poveda, K. & Whitehead, S. R. The eco-evolutionary impacts of domestication and agricultural practices on wild species. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160033 (2017).

    Article  Google Scholar 

  • 3.

    Vigne, J.-D. The origins of animal domestication and husbandry: A major change in the history of humanity and the biosphere. C. R. Biol. 334, 171–181 (2011).

    Article  Google Scholar 

  • 4.

    Vigne, J.-D. Early domestication and farming: What should we know or do for a better understanding?. Anthropozoologica 50, 123–150 (2015).

    Article  Google Scholar 

  • 5.

    Zeder, M. A. Archaeological approaches to documenting animal domestication. Doc. Domest. New Genet. Archaeol. Paradig. 666, 171–180 (2006).

    Google Scholar 

  • 6.

    Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, Albermale, 1868).

    Google Scholar 

  • 7.

    Belyaev, D. K., Plyusnina, I. Z. & Trut, L. N. Domestication in the silver fox (Vulpes fulvus Desm): Changes in physiological boundaries of the sensitive period of primary socialization. Appl. Anim. Behav. Sci. 13, 359–370 (1985).

    Article  Google Scholar 

  • 8.

    Belyaev, D. K. et al. Destabilizing selection as a factor in domestication. J. Hered. 70, 301–308 (1979).

    CAS  Article  Google Scholar 

  • 9.

    Trut, L. N. Early canid domestication: The farm-fox experiment: Foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 87, 160–169 (1999).

    Article  Google Scholar 

  • 10.

    Trut, L., Oskina, I. & Kharlamova, A. Animal evolution during domestication: The domesticated fox as a model. BioEssays 31, 349–360 (2009).

    Article  Google Scholar 

  • 11.

    Wilkins, A. S., Wrangham, R. W. & Fitch, W. T. The ‘Domestication Syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).

    Article  Google Scholar 

  • 12.

    Frantz, L. A. et al. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat. Genet. 47, 1141–1148 (2015).

    CAS  Article  Google Scholar 

  • 13.

    Marshall, F. B., Dobney, K., Denham, T. & Capriles, J. M. Evaluating the roles of directed breeding and gene flow in animal domestication. Proc. Natl. Acad. Sci. 111, 6153–6158 (2014).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Lord, K. A., Larson, G., Coppinger, R. P. & Karlsson, E. K. The history of farm foxes undermines the animal domestication syndrome. Trends. Ecol. Evol. 35, 125 (2019).

    Article  Google Scholar 

  • 15.

    Clutton-Brock, J. The process of domestication. Mammal Rev. 22, 79–85 (1992).

    Article  Google Scholar 

  • 16.

    Clutton-Brock, J. Domesticated Animals from Early Times (British Museum (Natural History) and William Heinemann Ltd., London, 1981).

    Google Scholar 

  • 17.

    Schlichting, C. D. & Pigliucci, M. Phenotypic Evolution: A Reaction Norm Perspective (Sinauer Associates Incorporated, New York, 1998).

    Google Scholar 

  • 18.

    Pigliucci, M., Murren, C. J. & Schlichting, C. D. Phenotypic plasticity and evolution by genetic assimilation. J. Exp. Biol. 209, 2362–2367 (2006).

    Article  Google Scholar 

  • 19.

    Ehrlich, P. J. & Lanyon, L. E. mechanical strain and bone cell function: A review. Osteoporos. Int. 13, 688–700 (2002).

    CAS  Article  Google Scholar 

  • 20.

    Pearson, O. M. & Lieberman, D. E. The aging of Wolff’s “law”: Ontogeny and responses to mechanical loading in cortical bone. Am. J. Phys. Anthropol. 125, 63–99 (2004).

    Article  Google Scholar 

  • 21.

    Pöllath, N., Schafberg, R. & Peters, J. Astragalar morphology: Approaching the cultural trajectories of wild and domestic sheep applying Geometric Morphometrics. J. Archaeol. Sci. Rep. 23, 810–821 (2019).

    Google Scholar 

  • 22.

    Drew, I. M., Perkins, D. Jr. & Daly, P. Prehistoric domestication of animals: Effects on bone structure. Science 171, 280–282 (1971).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Mainland, I., Schutkowski, H. & Thomson, A. F. Macro-and micromorphological features of lifestyle differences in pigs and wild boar. Anthropozoologica 42, 89–106 (2007).

    Google Scholar 

  • 24.

    Scheidt, A., Wölfer, J. & Nyakatura, J. A. The evolution of femoral cross-sectional properties in sciuromorph rodents: Influence of body mass and locomotor ecology. J. Morphol. 280, 1156–1169 (2019).

    PubMed  Google Scholar 

  • 25.

    Kilbourne, B. M. & Hutchinson, J. R. Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology. BMC Evol. Biol. 19, 1–16 (2019).

    Article  Google Scholar 

  • 26.

    Parsi-Pour, P. & Kilbourne, B. M. Functional morphology and morphological diversification of hind limb cross-sectional traits in mustelid mammals. Integr. Org. Biol. 2, obz032 (2020).

    Article  Google Scholar 

  • 27.

    Houssaye, A. & Botton-Divet, L. From land to water: Evolutionary changes in long bone microanatomy of otters (Mammalia: Mustelidae). Biol. J. Linn. Soc. 125, 240–249 (2018).

    Article  Google Scholar 

  • 28.

    Ruff, C. B. Biomechanical analyses of archaeological human skeletons. Biol. Anthropol. Hum. Skelet. Second Ed. 2, 183–206 (2007).

    Google Scholar 

  • 29.

    Henderson, C. Subsistence strategy changes: The evidence of entheseal changes. HOMO J. Comp. Hum. Biol. 64, 491–508 (2013).

    CAS  Article  Google Scholar 

  • 30.

    Jurmain, R., Cardoso, F. A., Henderson, C. & Villotte, S. Bioarchaeology’s Holy Grail: The reconstruction of activity. Companion Paleopathol. 666, 531–552 (2011).

    Google Scholar 

  • 31.

    Niinimäki, S. The relationship between musculoskeletal stress markers and biomechanical properties of the humeral diaphysis. Am. J. Phys. Anthropol. 147, 618–628 (2012).

    Article  Google Scholar 

  • 32.

    Villotte, S. & Knüsel, C. J. Understanding entheseal changes: Definition and life course changes. Int. J. Osteoarchaeol. 23, 135–146 (2013).

    Article  Google Scholar 

  • 33.

    Bayle, P. et al. Three-dimensional imaging and quantitative characterization of human fossil remains. Examples from the NESPOS database. Pleistocene Databases Acquis. Storing Shar. Mettmann Wiss. Schriften Neanderthal Mus. 4, 29–46 (2011).

    Google Scholar 

  • 34.

    Bondioli, L. et al. Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).

    Google Scholar 

  • 35.

    Bondioli, L. et al. Technical note: Morphometric maps of long bone shafts and dental roots for imaging topographic thickness variation. Am. J. Phys. Anthropol. 142, 328–334 (2010).

    Google Scholar 

  • 36.

    Cazenave, M. et al. Inner structural organization of the distal humerus in Paranthropus and Homo. C.R. Palevol 16, 521–532 (2017).

    Article  Google Scholar 

  • 37.

    Morimoto, N., De León, M. S. P. & Zollikofer, C. P. Exploring femoral diaphyseal shape variation in wild and captive chimpanzees by means of morphometric mapping: A test of Wolff’s law. Anat. Rec. Adv. Integr. Anat. Evol. Biol. 294, 589–609 (2011).

    Article  Google Scholar 

  • 38.

    Puymerail, L. The functionally-related signatures characterizing the endostructural organisation of the femoral shaft in modern humans and chimpanzee. C.R. Palevol 12, 223–231 (2013).

    Article  Google Scholar 

  • 39.

    Puymerail, L. et al. Structural analysis of the Kresna 11 Homo erectus femoral shaft (Sangiran, Java). J. Hum. Evol. 63, 741–749 (2012).

    Article  Google Scholar 

  • 40.

    Rabey, K. N. et al. Locomotor activity influences muscle architecture and bone growth but not muscle attachment site morphology. J. Hum. Evol. 78, 91–102 (2015).

    Article  Google Scholar 

  • 41.

    Wallace, I. J., Winchester, J. M., Su, A., Boyer, D. M. & Konow, N. Physical activity alters limb bone structure but not entheseal morphology. J. Hum. Evol. 107, 14–18 (2017).

    Article  Google Scholar 

  • 42.

    Zumwalt, A. A new method for quantifying the complexity of muscle attachment sites. Anat. Rec. Part B New Anat. Off. Publ. Am. Assoc. Anat. 286, 21–28 (2005).

    Google Scholar 

  • 43.

    Karakostis, F. A., Wallace, I. J., Konow, N. & Harvati, K. Experimental evidence that physical activity affects the multivariate associations among muscle attachments (entheses). J. Exp. Biol. 222, jeb213058 (2019).

    Article  Google Scholar 

  • 44.

    Hecker, H. M. Domestication revisited: Its implications for faunal analysis. J. Field Archaeol. 9, 217–236 (1982).

    Google Scholar 

  • 45.

    Lyman, R. L. & Lyman, C. Vertebrate Taphonomy (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  • 46.

    Zhou, X. L., Xu, Y. C., Yang, S. H., Hua, Y. & Stott, P. Effectiveness of femur bone indexes to segregate wild from captive minks, mustela vison, and forensic implications for small mammals. J. Forensic Sci. 60, 72–75 (2015).

    Article  Google Scholar 

  • 47.

    Barone, R. Anatomie comparée des mammifères domestiques, Vol. 3 (Vigot, Paris, 1976).

    Google Scholar 

  • 48.

    Wood, S. N. Thin plate regression splines. J. R Stat. Soc. Ser. B Stat. Methodol. 65, 95–114 (2003).

    MathSciNet  MATH  Article  Google Scholar 

  • 49.

    Wood, S. N. Generalized Additive Models: An Introduction with R (CRC Press, Boca Raton, 2017).

    Google Scholar 

  • 50.

    Grant, A. The use of tooth wear as a guide to the age of domestic ungulates. In Ageing and Sexing Animal Bones from Archaeological Sites (eds Wilson, B. et al.) 91–108 (B.A.R, New York, 1982).

    Google Scholar 

  • 51.

    Horard-Herbin, M.-P. Le village celtique des Arènes à Levroux. L’élevage et les productions animales dans l’économie de la fin du second âge du Fer-Levroux 4. vol. 12 (Fédération pour l’édition de la Revue archéologique du Centre de la France, Paris, 1997).

  • 52.

    Koolstra, J. H., van Eijden, T. M. G. J., Weijs, W. A. & Naeije, M. A three-dimensional mathematical model of the human masticatory system predicting maximum possible bite forces. J. Biomech. 21, 563–576 (1988).

    CAS  Article  Google Scholar 

  • 53.

    Bookstein, F. L. Morphometric Tools for Landmark Data (Cambridge University Press, New York, 1991).

    Google Scholar 

  • 54.

    Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).

    CAS  Article  Google Scholar 

  • 55.

    Mitteroecker, P. & Bookstein, F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol. Biol. 38, 100–114 (2011).

    Article  Google Scholar 

  • 56.

    Adams, D. C. & Otárola-Castillo, E. geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).

    Article  Google Scholar 

  • 57.

    Schlager, S. Chapter 9—Morpho and Rvcg—shape analysis in R: R-packages for geometric morphometrics, shape analysis and surface manipulations. In Statistical Shape and Deformation Analysis (eds Zheng, G. et al.) 217-256 (Academic Press, London, 2017). https://doi.org/10.1016/B978-0-12-810493-4.00011-0.

    Google Scholar 

  • 58.

    Carter, D. R., Van der Meulen, M. C. H. & Beaupré, G. S. Mechanical factors in bone growth and development. Bone 18, S5–S10 (1996).

    Article  Google Scholar 

  • 59.

    Gosman, J. H., Stout, S. D. & Larsen, C. S. Skeletal biology over the life span: A view from the surfaces. Am. J. Phys. Anthropol. 146, 86–98 (2011).

    Article  Google Scholar 

  • 60.

    van Der Meulen, M. C., Beaupre, G. S. & Carter, D. R. Mechanobiologic influences in long bone cross-sectional growth. Bone 14, 635–642 (1993).

    Article  Google Scholar 

  • 61.

    O’Regan, H. J. & Kitchener, A. C. The effects of captivity on the morphology of captive, domesticated and feral mammals. Mammal Rev. 35, 215–230 (2005).

    Article  Google Scholar 

  • 62.

    Kimura, T. & Hamada, Y. Growth of wild and laboratory born chimpanzees. Primates 37, 237–251 (1996).

    Article  Google Scholar 

  • 63.

    Armitage, P. L. Jawbone of a South American monkey from Brooks Wharf, City of London (London Archaeologist Association, London, 1983).

    Google Scholar 

  • 64.

    Felson, D. T., Zhang, Y., Hannan, M. T. & Anderson, J. J. Effects of weight and body mass index on bone mineral density in men and women: The Framingham study. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 8, 567–573 (1993).

    CAS  Article  Google Scholar 

  • 65.

    Ravn, P. et al. Low body mass index is an important risk factor for low bone mass and increased bone loss in early postmenopausal women Early Postmenopausal Intervention Cohort (EPIC) study group. J. Bone Miner. Res Off. J. Am. Soc. Bone Miner. Res. 14, 1622–1627 (1999).

    CAS  Article  Google Scholar 

  • 66.

    Niinimäki, S. & Salmi, A.-K. Entheseal changes in free-ranging versus zoo reindeer—Observing activity status of reindeer. Int. J. Osteoarchaeol. 26, 314–323 (2016).

    Article  Google Scholar 

  • 67.

    Harbers, H. et al. The mark of captivity: Plastic responses in the ankle bone of a wild ungulate (Sus scrofa). R. Soc. Open Sci. 7, 192039 (2020).

    ADS  Article  Google Scholar 

  • 68.

    Michopoulou, E., Nikita, E. & Valakos, E. D. Evaluating the efficiency of different recording protocols for entheseal changes in regards to expressing activity patterns using archival data and cross-sectional geometric properties. Am. J. Phys. Anthropol. 158, 557–568 (2015).

    Article  Google Scholar 

  • 69.

    Milella, M., Giovanna Belcastro, M., Zollikofer, C. P. & Mariotti, V. The effect of age, sex, and physical activity on entheseal morphology in a contemporary Italian skeletal collection. Am. J. Phys. Anthropol. 148, 379–388 (2012).

    Article  Google Scholar 

  • 70.

    Seeman, E. Bone quality: The material and structural basis of bone strength. J. Bone Miner. Metab. 26, 1–8 (2008).

    Article  Google Scholar 

  • 71.

    Wilkinson, S. et al. Signatures of diversifying selection in European pig breeds. PLOS Genet. 9, e1003453 (2013).

    CAS  Article  Google Scholar 

  • 72.

    Pelletier, F. & Coltman, D. W. Will human influences on evolutionary dynamics in the wild pervade the Anthropocene?. BMC Biol. 16, 7 (2018).

    Article  Google Scholar 

  • 73.

    O’Higgins, P. et al. Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. J. Anat. 218, 3–15 (2011).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Transatlantic research and study partnership continues amid the pandemic

    Transcriptomic and life history responses of the mayfly Neocloeon triangulifer to chronic diel thermal challenge