in

Joint influence of genetic origin and climate on the growth of Masson pine (Pinus massoniana Lamb.) in China

  • 1.

    Jaume, G. O. et al. Effects of spacing and genetic entry on radial growth and ring density development in Scots pine (Pinus sylvestris L.). Ann. Forest. Sci. 68, 1233–124 (2011).

    • Article
    • Google Scholar
  • 2.

    Quesada, T. et al. Genetic control of growth and shoot phenology in juvenile loblolly pine (Pinus taeda L.) clonal trials. Tree. Genet. Genomes. 13, 65–80 (2017).

    • Article
    • Google Scholar
  • 3.

    Ane, Z. G. et al. Effects of cambial age, clone and climatic factors on RW and ring density in Norway spruce (Picea abies) in southeastern Finland. Forest. Ecol. Manag. 263, 9–16 (2012).

    • Article
    • Google Scholar
  • 4.

    Stefan, K., Manfred, J. L., Thomas, G., Johann, H. & Silvio, S. Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: Selecting appropriate provenances for future climate. Forest. Ecol. Manag. 271, 46–57 (2012).

    • Article
    • Google Scholar
  • 5.

    Miloš, I. et al. Pattern of genotype by environment interaction for radiata pine in southern Australia. Ann. Forest. Sci. 72, 391–401 (2015).

    • Article
    • Google Scholar
  • 6.

    Duan, J. et al. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat. Commun. 8, 14008–14015 (2017).

  • 7.

    Zhang, R. et al. The Radial Growth of Schrenk Spruce (Picea schrenkiana Fisch. et Mey.) Records the Hydroclimatic Changes in the Chu River Basin over the Past 175 Years. Forests 10, 223–234 (2019).

    • Article
    • Google Scholar
  • 8.

    Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P. & Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New. phytol. 203, 1231–1241 (2014).

  • 9.

    Bouriaud, O., Teodosiu, M., Kirdyanov, A. V. & Wirth, C. Influence of wood density in tree-ring-based annual productivity assessments and its errors in Norway spruce. Biogeosciences 12, 6205–6217 (2015).

  • 10.

    Jožica, G. et al. Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front. Plant. Sci. 6, 1–12 (2015).

    • Google Scholar
  • 11.

    Briffa, K. R., Osborn, T. J. & Schweingruber, F. H. Large-scale temperature inferences from tree rings: a review. Global. Planet. Change. 40, 11–26 (2004).

  • 12.

    Büntgen, U., Frank, D., Trouet, V. & Espe, J. Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees 4, 261–273 (2010).

    • Article
    • Google Scholar
  • 13.

    Sineenart, P., Nathsuda, P., Paramate, P. & Supaporn, B. Variation in Climate Signals in Teak Tree-Ring Chronologies in Two Different Growth Areas. Forests 9, 772–784 (2018).

    • Article
    • Google Scholar
  • 14.

    Xiang, W. et al. General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecol. Res. 26, 699–711 (2011).

    • Article
    • Google Scholar
  • 15.

    Barthélémy, D. & Caraglio, Y. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann. Bot-London. 99, 375–407 (2007).

    • Article
    • Google Scholar
  • 16.

    Modrzynski, J. Response of Picea abies populations from elevational transects in the Polish Sudety and Carpathian mountains to simulated drought stress. Forest. Ecol. Manag. 165, 105–116 (2002).

    • Article
    • Google Scholar
  • 17.

    Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Forest. Sci. 63, 625–644 (2006).

    • Article
    • Google Scholar
  • 18.

    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292, 673–679 (2001).

  • 19.

    Pearman, P. B., D’Amen, M., Graham, C. H., Thuiller, W. & Zimmermann, N. E. Within-taxon niche structure: niche conservatism, divergence and predicted effects of climate change. Ecography 33, 990–1003 (2010).

    • Article
    • Google Scholar
  • 20.

    Jiang, D., Ding, F., Yan, X., Hao, M. & Dai, S. Climate Response Analysis of Pinus massoniana Tree-Ring Chronologies in Shuangpai County, China. Journal of Resources and Ecology 8, 148–153 (in Chinese, 2017).

  • 21.

    Hannrup, B. & Ekberg, I. Age-age correlations for tracheid length and wood density in Pinus sylvestris. Can. J. For. Res. 28, 1373–1379 (1998).

    • Article
    • Google Scholar
  • 22.

    Hannrup, B., Ekberg, I. & Persson, A. Genetic correlations among wood, growth capacity and stem traits in Pinus silvestris. Scan. J. For. Res. 15, 161–170 (2000).

    • Article
    • Google Scholar
  • 23.

    Fries, A. & Eriksson, T. Estimating genetic parameters for wood density of Scots pine (Pinus sylvestris L.). Silvae. Genet. 55, 84–92 (2006).

    • Article
    • Google Scholar
  • 24.

    Zhang, S. & Morgenstern, E. Genetic variation and inheritance of wood density in black spruce (Picea mariana) and its relationship with growth: implications for tree breeding. Wood. Sci. Technol. 30, 63–75 (1995).

    • Article
    • Google Scholar
  • 25.

    Mörling, T. Evaluation of annual ring width and ring density development following fertilisation and thinning of Scots pine. Ann. Forest. Sci. 59, 29–40 (2002).

    • Article
    • Google Scholar
  • 26.

    Wang, T., Aitken, S. N., Rozenberg, P. & Millie, F. Selection for improved growth and wood density in Lodgepole pine: effects on radial patterns of wood variation. Wood. Sci. Technol. 32, 391–403 (2000).

    • CAS
    • Google Scholar
  • 27.

    Bujold, S., Simpson, J. D., Beukeveld, J. H. J. & Schneider, M. H. Relative density and growth of eleven Norway spruce provenances in central New Brunswick. North. J. Appl. For. 13, 124–128 (1996).

    • Article
    • Google Scholar
  • 28.

    Ane, Z. G. et al. Differences in growth and wood property traits in cloned Norway spruce (Picea abies). Can. J. For. Res. 37, 2600–2611 (2007).

    • Article
    • Google Scholar
  • 29.

    Camareroa, J. J. & Gutiérrez, E. Wood density of silver fir reflects drought and cold stress across climatic and biogeographic gradients. Dendrochronologia 45, 101–112 (2017).

    • Article
    • Google Scholar
  • 30.

    Washington, J. G., Milos, I., Katharina, J. L., Andreas, H. & Charlie, B. L. Drivers of genotype by environment interaction in radiata pine as indicated by multivariate regression trees. Forest. Ecol. Manag. 353, 21–29 (2015).

    • Article
    • Google Scholar
  • 31.

    Rehfeldt, G. E., Ying, C. C., Spittlehouse, D. L. & Hamilton, D. A. Genetic responses to climate in Pinus contorta: Niche breadth, climate change, and reforestation. Ecology. Mongr. 69, 375–407 (1999).

    • Article
    • Google Scholar
  • 32.

    Wang, T., Hamann, A., Yanchuk, A., O’Neill, G. A. & Aitken, S. N. Use of response functions in selecting lodgepole pine populations for future climates. Global. Change. Biol. 12, 2404–2416 (2006).

  • 33.

    St Clair, J. B., Mandel, N. L. & Vance-Borland, K. W. Genecology of douglas fir in western oregon and Washington. Ann Bot-London 96, 1199–1214 (2005).

    • Article
    • Google Scholar
  • 34.

    McLachlan, J., Hellmann, J. J. & Schwartz, M. W. A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302 (2007).

  • 35.

    Ukrainetz, N. K., O’Neill, G. A. & Jaquish, B. Comparison of fixed and focal point seed transfer systems for reforestation and assisted migration: a case study for interior spruce in British Columbia. Can. J. For. Res. 41, 1452–1464 (2011).

    • Article
    • Google Scholar
  • 36.

    Natalia, V. P. et al. Climate and population origin shape pine tree height-diameter allometry. New Forests 48, 363–382 (2017).

    • Article
    • Google Scholar
  • 37.

    Grabner, M., Wimmer, R., Gierlinger, N., Evans, R. & Downes, G. Heartwood extractives in larch and effects on X-ray densitom etry. Can J Res 35, 2781–2786 (2005).

    • Article
    • Google Scholar
  • 38.

    Savva, Y., Koubaa, A. & Tremblay, F. Effects of radial growth, tree age, climate, and seed originon wood density of diverse jack pine populations. Trees 24, 53–65 (2010).

    • Article
    • Google Scholar
  • 39.

    Shapiro, S. S. & Wilk, M. B. Analysis of variance test for normality. Biometrika 52, 591–611 (1965).

  • 40.

    Wang, X. W., Weng, Y. H., Liu, G. F., Krasowski, M. J. & Yang, C. P. Variations in carbon concentration, sequestration and partitioning among Betula platyphylla provenances. Forest. Ecol. Manag. 358, 344–352 (2015).

    • Article
    • Google Scholar
  • 41.

    Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin. 44, 69–75 (1983).

    • Google Scholar
  • 42.

    Kellomäki, S., Peltola, H., Nuutinen, T., Korhonen, K. T. & Strandman, H. Sensitivity of managed boreal forests in Finland to climate change, with implications for adaptive management. Philosophical Transactions of the Royal Society B: Biological Sciences 363, 2341–2351 (2008).

    • Article
    • Google Scholar
  • 43.

    Fritts, H. C. Tree ring and climate. 567–568 (London Academic Press, 1976).

  • 44.

    Chen, F. et al. Divergent response of tree-ring width and maximum latewood density of Abies faxoniana to warming trends at the timberline of the western Qinling Mountains and northeastern Tibetan Plateau, China. Silva. Fenn. 49, 1155–1171 (2015).

    • Article
    • Google Scholar
  • 45.

    Lachenbruch, B. & McCulloh, K. A. Traits, properties, and performance: how woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant. New. Phytol. 204, 747–764 (2014).

  • 46.

    Bouriaud, O., Leban, J. M., Bert, D. & Deleuze, C. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree. Physiol. 25, 651–660 (2005).

  • 47.

    Campelo, F., Nabais, C., Freitas, H. & Gutiérrez, E. Climatic significance of treering width and intra-annual density fluctuations in Pinus pinea from a dry Mediterranean area in Portugal. Ann. Forest. Sci. 64, 229–238 (2007).

    • Article
    • Google Scholar
  • 48.

    Franceschini, T. et al. Decreasing trend and fluctuations in the mean ring density of Norway spruce through the twentieth century. Ann. Forest. Sci. 67, 816–826 (2010).

    • Article
    • Google Scholar
  • 49.

    Dengel, S., Aeby, D. & Grace, J. A relationship between galactic cosmic radiation and tree rings. New. Phytol. 184, 545–551 (2009).

  • 50.

    Rathgeber, C. B. Conifer tree-ring density inter-annual variability–anatomical, physiological and environmental determinants. New. Phytol. 216, 621–625 (2017).

    • Article
    • Google Scholar
  • 51.

    Lebourgeois, F. Climatic signals in early, latewood and total ring width of Corsican pine from western France. Ann. Forest. Sci. 57, 155–164 (2000).

    • Article
    • Google Scholar
  • 52.

    Mäkinen, H. et al. Radial growth variation of Norway spruce across latitudinal and altitudinal gradients in central and northen Europe. Forest. Ecol. Manag. 171, 243–259 (2002a).

    • Article
    • Google Scholar
  • 53.

    Mariana, T., Trevor, B. & Colin, L. Changing climatic sensitivities of two spruce species across a moisture gradient in Northeastern Canada. Dendrochronologia 29, 25–30 (2011).

    • Article
    • Google Scholar
  • 54.

    Saksa, T., Heiskanen, J., Miina, J., Tuomola, J. & Kolström, T. Multilevel modelling of height growth in young Norway spruce plantations in southern Finland. Silva. Fenn. 39, 143–153 (2005).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil

    It does not always take two to tango: “Syntrophy” via hydrogen cycling in one bacterial cell