in

Leptoria phrygia in Southern Taiwan shuffles and switches symbionts to resist thermal-induced bleaching

  • 1.

    Muscatine, L. In Ecosystems of the world 25: Coral reefs (ed. Z. Dubinsky) 75-84 (Elsevier (1990).

  • 2.

    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Niño–Southern Oscillation Event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).

    • Google Scholar
  • 3.

    Glynn, P. W. Coral reef bleaching: facts, hypotheses and implications. Glob. Change Biol. 2, 495–509, https://doi.org/10.1111/j.1365-2486.1996.tb00063.x (1996).

  • 4.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82, https://doi.org/10.1038/nature22901 https://www.nature.com/articles/nature22901#supplementary-information (2017).

  • 5.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80, https://doi.org/10.1126/science.aan8048 (2018).

  • 6.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580.e2576, https://doi.org/10.1016/j.cub.2018.07.008 (2018).

  • 7.

    Chen, C. A., Yang, Y.-W., Wei, N. V., Tsai, W.-S. & Fang, L.-S. Symbiont diversity in scleractinian corals from tropical reefs and subtropical non-reef communities in Taiwan. Coral Reefs 24, 11–22, https://doi.org/10.1007/s00338-004-0389-7 (2005).

  • 8.

    Keshavmurthy, S. et al. Can resistant coral-Symbiodinium associations enable coral communities to survive climate change? A study of a site exposed to long-term hot water input. PeerJ 2, e327, https://doi.org/10.7717/peerj.327 (2014).

  • 9.

    Hsu, C.-M. et al. Temporal and spatial variations in symbiont communities of catch bowl coral Isopora palifera (Scleractinia: Acroporidae) on reefs in Kenting National Park, Taiwan. Zool. Stud. 51, 1343–1353 (2012).

    • CAS
    • Google Scholar
  • 10.

    Keshavmurthy, S. et al. Symbiont communities and host genetic structure of the brain coral Platygyra verweyi, at the outlet of a nuclear power plant and adjacent areas. Mol. Ecol. 21, 4393–4407, https://doi.org/10.1111/j.1365-294X.2012.05704.x (2012).

  • 11.

    Baker, A. C. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology 34, https://doi.org/10.1146/annurev.ecolsys.34.011802.132417 (2003).

  • 12.

    Fabricius, K. E., Mieog, J. C., Colin, P. L., Idip, D. & van Oppen, M. J. H. Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13, https://doi.org/10.1111/j.1365-294X.2004.02230.x (2004).

  • 13.

    Cunning, R., Silverstein, R. N. & Baker, A. C. Symbiont shuffling linked to differential photochemical dynamics of Symbiodinium in three Caribbean reef corals. Coral Reefs 37, 145–152, https://doi.org/10.1007/s00338-017-1640-3 (2018).

  • 14.

    LaJeunesse, T. C. et al. Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus. Symbiodinium. J. Biogeogr. 37, 785–800, https://doi.org/10.1111/j.1365-2699.2010.02273.x (2010).

    • Article
    • Google Scholar
  • 15.

    Rowan, R. Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430, https://doi.org/10.1038/430742a (2004).

  • 16.

    Garren, M., Walsh, S. M., Caccone, A. & Knowlton, N. Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25, 503–512, https://doi.org/10.1007/s00338-006-0146-1 (2006).

  • 17.

    Lien, Y.-T. et al. Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities. Coral Reefs 26, 35–44, https://doi.org/10.1007/s00338-006-0185-7 (2007).

  • 18.

    Ghavam Mostafavi, P., Fatemi, S. M. R., Shahhosseiny, M. H., Hoegh-Guldberg, O. & Loh, W. K. W. Predominance of clade D Symbiodinium in shallow-water reef-building corals off Kish and Larak Islands (Persian Gulf, Iran). Mar. Biol. 153, 25–34, https://doi.org/10.1007/s00227-007-0796-8 (2007).

    • Article
    • Google Scholar
  • 19.

    LaJeunesse, T. C. et al. Specificity and stability in high latitude eastern Pacific coral-algal symbioses. Limnology Oceanography 53, 719–727, https://doi.org/10.4319/lo.2008.53.2.0719 (2008).

  • 20.

    Tonk, L., Sampayo, E. M., Weeks, S., Magno-Canto, M. & Hoegh-Guldberg, O. Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. Plos One 8, e68533, https://doi.org/10.1371/journal.pone.0068533 (2013).

  • 21.

    Hennige, S. J. et al. Acclimation and adaptation of scleractinian coral communities along environmental gradients within an Indonesian reef system. J. Exp. Mar. Biol. Ecol. 391, 143–152, https://doi.org/10.1016/j.jembe.2010.06.019 (2010).

    • Article
    • Google Scholar
  • 22.

    Lien, Y.-T. et al. Host genetics and Symbiodinium D diversity in a stress-tolerant scleractinian coral, Oulastrea crispata, in the West Pacific. Mar. Ecol. Prog. Ser. 473, 163–177 (2013).

  • 23.

    Oliver, T. A. & Palumbi, S. R. Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30, 241–250, https://doi.org/10.1007/s00338-010-0696-0 (2011).

  • 24.

    Hume, B. C. C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Scientific Reports 5, 8562, https://doi.org/10.1038/srep08562 https://www.nature.com/articles/srep08562#supplementary-information (2015).

  • 25.

    Stat, M. et al. The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: correlations with host and the history of ocean thermal stress. Ecol. Evol. 3, 1317–1329, https://doi.org/10.1002/ece3.556 (2013).

  • 26.

    Silverstein, R. N., Cunning, R., Baker, A. C. & Tenacious, D. Symbiodiniumin clade D remain in reef corals at both high and low temperature extremes despite impairment. J Exp Biol 220, https://doi.org/10.1242/jeb.148239 (2017).

  • 27.

    Kemp, D. W., Hernandez-Pech, X., Iglesias-Prieto, R., Fitt, W. K. & Schmidt, G. W. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnology Oceanography 59, 788–797, https://doi.org/10.4319/lo.2014.59.3.0788 (2014).

  • 28.

    Baker, A. C. Reef corals bleach to survive change. Nature 411, 765, https://doi.org/10.1038/35081151 (2001).

  • 29.

    Silverstein, R. N., Cunning R Fau-Baker, A. C. & Baker, A. C. Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob. Change Biol. 21, 236–249 (2015).

  • 30.

    Rowan, R., Knowlton, N., Baker, A. & Jara, J. Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388, 265, https://doi.org/10.1038/40843 (1997).

  • 31.

    Baker, A. C., Starger, C. J., McClanahan, T. R. & Glynn, P. W. Corals’ adaptive response to climate change. Nature 430, 741, https://doi.org/10.1038/430741a https://www.nature.com/articles/430741a#supplementary-information (2004).

  • 32.

    Császár, N. B. M., Ralph, P. J., Frankham, R., Berkelmans, R. & van Oppen, M. J. H. Estimating the potential for adaptation of corals to climate warming. Plos One 5, e9751, https://doi.org/10.1371/journal.pone.0009751 (2010).

  • 33.

    Cunning, R., Silverstein, R. N. & Baker, A. C. Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc. R. Soc. B 282, 20141725, https://doi.org/10.1098/rspb.2014.1725 (2015).

  • 34.

    Lewis, C., Neely, K. & Rodriguez-Lanetty, M. Recurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist Zooxanthella in the threatened pillar coral, Dendrogyra cylindrus. Frontiers in Marine Science 6, https://doi.org/10.3389/fmars.2019.00005 (2019).

  • 35.

    Chen, C. A., Wang, J.-T., Fang, L.-S. & Yang, Y.-W. Fluctuating algal symbiont communities in Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Mar. Ecol. Prog. Ser. 295, 113–121 (2005).

  • 36.

    Yorifuji, M., Harii, S., Nakamura, R. & Fudo, M. Shift of symbiont communities in Acropora tenuis juveniles under heat stress. PeerJ 5, e4055, https://doi.org/10.7717/peerj.4055 (2017).

  • 37.

    Thornhill, D. J., Lajeunesse, T. C., Kemp, D. W. & Fitt, W. K. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148, https://doi.org/10.1007/s00227-005-0114-2 (2006).

  • 38.

    Arif, C. et al. Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol. Ecol. 23, 4418–4433, https://doi.org/10.1111/mec.12869 (2014).

  • 39.

    Ziegler, M. et al. Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J. Biogeogr. 44, 674–686, https://doi.org/10.1111/jbi.12913 (2017).

  • 40.

    Boulotte, N. M. et al. Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. The ISME journal 10, https://doi.org/10.1038/ismej.2016.54 (2016).

  • 41.

    Carballo-Bolaños, R., Denis, V., Huang, Y.-Y., Keshavmurthy, S. & Chen, C. A. Temporal variation and photochemical efficiency of species in Symbiodinaceae associated with coral Leptoria phrygia (Scleractinia; Merulinidae) exposed to contrasting temperature regimes. Plos One 14, e0218801, https://doi.org/10.1371/journal.pone.0218801 (2019).

  • 42.

    Jan, S. & Chen, C.-T. A. Potential biogeochemical effects from vigorous internal tides generated in Luzon Strait: A case study at the southernmost coast of Taiwan. Journal of Geophysical Research: Oceans 114, https://doi.org/10.1029/2008JC004887 (2009).

  • 43.

    Stat, M. et al. Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. Plos One 6, e15854, https://doi.org/10.1371/journal.pone.0015854 (2011).

  • 44.

    Rouzé, H., Lecellier, G., Pochon, X., Torda, G. & Berteaux-Lecellier, V. Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatio-temporal survey in Moorea. Sci. Rep. 9, 7921, https://doi.org/10.1038/s41598-019-44017-5 (2019).

  • 45.

    Coffroth, M. A., Poland, D. M., Petrou, E. L., Brazeau, D. A. & Holmberg, J. C. Environmental symbiont acquisition may not be the solution to warming seas for reef-building corals. Plos One 5, e13258, https://doi.org/10.1371/journal.pone.0013258 (2010).

  • 46.

    Goulet, T. L. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 321, 1–7 (2006).

  • 47.

    Little, A. F., van Oppen, M. J. H. & Willis, B. L. Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492, https://doi.org/10.1126/science.1095733 (2004).

  • 48.

    Reich, H. G., Robertson, D. L. & Goodbody-Gringley, G. Do the shuffle: Changes in Symbiodinium consortia throughout juvenile coral development. (2017).

  • 49.

    Buddemeier, R. W. & Fautin, D. G. Coral bleaching as an adaptive mechanism. BioScience 43, https://doi.org/10.2307/1312064 (1993).

  • 50.

    Kao, K.-W., Keshavmurthy, S., Tsao, C.-H., Wang, J.-T. & Chen, A. C.-L. Repeated and prolonged temperature anomalies negate Symbiodiniaceae genera shuffling in the coral Platygyra verweyi (Scleractinia; Merulinidae). Zool. Stud. 57, 55 (2018).

    • CAS
    • Google Scholar
  • 51.

    Ferrara, G. et al. In. Cell. Mol. Biol. Lett. 11, 155 (2006).

  • 52.

    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620, https://doi.org/10.1093/bioinformatics/btt593 (2014).

  • 53.

    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Meth 7, 335-336, http://www.nature.com/nmeth/journal/v7/n5/suppinfo/nmeth.f.303_S1.html (2010).

  • 54.

    Cunning, R., Gates, R. D. & Edmunds, P. J. Using high-throughput sequencing of ITS2 to describe Symbiodinium metacommunities in St. John, US Virgin Islands. PeerJ 5, e3472, https://doi.org/10.7717/peerj.3472 (2017).

  • 55.

    Tong, H. et al. Temperature shapes coral-algal symbiosis in the South China Sea. Scientific Reports 7, 40118, https://doi.org/10.1038/srep40118 https://www.nature.com/articles/srep40118#supplementary-information (2017).


  • Source: Ecology - nature.com

    Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards