in

Life history and population regulation shape demographic competence and influence the maintenance of endemic disease

  • 1.

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000).

    CAS  PubMed  Google Scholar 

  • 2.

    Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. Global trends in infectious diseases at the wildlife–livestock interface. Proc. Natl Acad. Sci. USA 112, 9662–9667 (2015).

    CAS  PubMed  Google Scholar 

  • 3.

    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Narrod, C., Zinsstag, J. & Tiongco, M. A One Health framework for estimating the economic costs of zoonotic diseases on society. Ecohealth 9, 150–162 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 5.

    Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress? Phil. Trans. R. Soc. B 372, 20160167 (2017).

    PubMed  Google Scholar 

  • 6.

    Park, A. W. Phylogenetic aggregation increases zoonotic potential of mammalian viruses. Biol. Lett. 15, 20190668 (2019).

    PubMed  Google Scholar 

  • 7.

    Davies, T. J. & Pedersen, A. B. Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc. R. Soc. B 275, 1695–1701 (2008).

    PubMed  Google Scholar 

  • 8.

    Dallas, T., Park, A. W. & Drake, J. M. Predictability of helminth parasite host range using information on geography, host traits and parasite community structure. Parasitology 144, 200–205 (2017).

    PubMed  Google Scholar 

  • 9.

    Martin, L. B., Burgan, S. C., Adelman, J. S. & Gervasi, S. S. Host competence: an organismal trait to integrate immunology and epidemiology. Integr. Comp. Biol. 56, 1225–1237 (2016).

    PubMed  Google Scholar 

  • 10.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    PubMed  Google Scholar 

  • 12.

    Martin, G. et al. Climate change could increase the geographic extent of Hendra virus spillover risk. Ecohealth 15, 509–525 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 13.

    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Viana, M. et al. Assembling evidence for identifying reservoirs of infection. Trends Ecol. Evol. 29, 270–279 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Thrall, P. H., Antonovics, J. & Hall, D. W. Host and pathogen coexistence in sexually transmitted and vector-borne diseases characterized by frequency-dependent disease transmission. Am. Nat. 142, 543–552 (1993).

    Google Scholar 

  • 16.

    Anderson, R. M. & May, R. M. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. Lond. B 291, 451–524 (1981).

    Google Scholar 

  • 17.

    Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol. 51, 3–47 (1976).

    CAS  PubMed  Google Scholar 

  • 18.

    Solomon, M. E. The natural control of animal populations. J. Anim. Ecol. 18, 1–35 (1949).

  • 19.

    McDonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19, 443–449 (2016).

  • 20.

    Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: a comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Google Scholar 

  • 21.

    Pfister, C. A. Patterns of variance in stage-structured populations: evolutionary predictions and ecological implications. Proc. Natl Acad. Sci. USA 95, 213–218 (1998).

    CAS  PubMed  Google Scholar 

  • 22.

    Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012).

    PubMed  Google Scholar 

  • 23.

    Cronin, J. P., Rúa, M. A. & Mitchell, C. E. Why is living fast dangerous? Disentangling the roles of resistance and tolerance of disease. Am. Nat. 184, 172–187 (2014).

    PubMed  Google Scholar 

  • 24.

    Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol. 78, 427–436 (2009).

    PubMed  Google Scholar 

  • 25.

    Muths, E., Scherer, R. D. & Pilliod, D. S. Compensatory effects of recruitment and survival when amphibian populations are perturbed by disease. J. Appl. Ecol. 48, 873–879 (2011).

    Google Scholar 

  • 26.

    Arthur, A., Ramsey, D. & Efford, M. Impact of bovine tuberculosis on a population of brushtail possums (Trichosurus vulpecula Kerr) in the Orongorongo Valley, New Zealand. Wildl. Res. 31, 389–395 (2004).

    Google Scholar 

  • 27.

    Gaillard, J.-M. & Yoccoz, N. G. Temporal variation in survival of mammals: a case of environmental canalization? Ecology 84, 3294–3306 (2003).

    Google Scholar 

  • 28.

    Korpimäki, E., Brown, P. R., Jacob, J. & Pech, R. P. The puzzles of population cycles and outbreaks of small mammals solved? BioScience 54, 1071–1079 (2004).

    Google Scholar 

  • 29.

    Gaillard, J.-M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).

    CAS  PubMed  Google Scholar 

  • 30.

    McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evol. 16, 295–300 (2001).

    CAS  PubMed  Google Scholar 

  • 31.

    De Castro, F. & Bolker, B. Mechanisms of disease‐induced extinction. Ecol. Lett. 8, 117–126 (2005).

    Google Scholar 

  • 32.

    McCallum, H. Disease and the dynamics of extinction. Phil. Trans. R. Soc. B 367, 2828–2839 (2012).

    PubMed  Google Scholar 

  • 33.

    Anderson, R. M. & May, R. M. Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982).

    PubMed  Google Scholar 

  • 34.

    Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).

    CAS  PubMed  Google Scholar 

  • 35.

    De Roode, J. C., Yates, A. J. & Altizer, S. Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proc. Natl Acad. Sci. USA 105, 7489–7494 (2008).

    PubMed  Google Scholar 

  • 36.

    Anderson, R. M. Parasite pathogenicity and the depression of host population equilibria. Nature 279, 150 (1979).

    Google Scholar 

  • 37.

    Anderson, R. M. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford Univ. Press, 1991).

  • 38.

    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).

    PubMed  Google Scholar 

  • 39.

    Calvete, C. Modeling the effect of population dynamics on the impact of rabbit hemorrhagic disease. Conserv. Biol. 20, 1232–1241 (2006).

    PubMed  Google Scholar 

  • 40.

    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).

    PubMed  Google Scholar 

  • 41.

    Calisher, C. H. et al. Do unusual site-specific population dynamics of rodent reservoirs provide clues to the natural history of hantaviruses? J. Wildl. Dis. 37, 280–288 (2001).

    CAS  PubMed  Google Scholar 

  • 42.

    Rickman, S. J., Dulvy, N. K., Jennings, S. & Reynolds, J. D. Recruitment variation related to fecundity in marine fishes. Can. J. Fish. Aquat. Sci. 57, 116–124 (2000).

    Google Scholar 

  • 43.

    Sæther, B.-E. & Bakke, Ø. Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81, 642–653 (2000).

    Google Scholar 

  • 44.

    Bielby, J. et al. The fast–slow continuum in mammalian life history: an empirical reevaluation. Am. Nat. 169, 748–757 (2007).

    CAS  PubMed  Google Scholar 

  • 45.

    Godfray, H. C. J. et al. A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain. Proc. R. Soc. Lond. B 280, 20131634 (2013).

    Google Scholar 

  • 46.

    Gaillard, J.-M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).

    PubMed  Google Scholar 

  • 47.

    Earn, D. J. D., Rohani, P. & Grenfell, B. T. Persistence, chaos and synchrony in ecology and epidemiology. Proc. R. Soc. Lond. B 265, 7–10 (1998).

    CAS  Google Scholar 

  • 48.

    Rohani, P., Earn, D. J. D. & Grenfell, B. T. Opposite patterns of synchrony in sympatric disease metapopulations. Science 286, 968–971 (1999).

    CAS  PubMed  Google Scholar 

  • 49.

    Salathé, M. & Jones, J. H. Dynamics and control of diseases in networks with community structure. PLoS Comput. Biol. 6, e1000736 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 50.

    Sah, P., Leu, S. T., Cross, P. C., Hudson, P. J. & Bansal, S. Unraveling the disease consequences and mechanisms of modular structure in animal social networks. Proc. Natl Acad. Sci. USA 114, 4165–4170 (2017).

  • 51.

    Silk, M. J. et al. Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations. Phil. Trans. R. Soc. B 374, 20180211 (2019).

    PubMed  Google Scholar 

  • 52.

    Hopkins, S. R., Fleming‐Davies, A. E., Belden, L. K. & Wojdak, J. M. Systematic review of modelling assumptions and empirical evidence: does parasite transmission increase nonlinearly with host density? Methods Ecol. Evol. 11, 476–486 (2020).

    Google Scholar 

  • 53.

    Froissart, R., Doumayrou, J., Vuillaume, F., Alizon, S. & Michalakis, Y. The virulence–transmission trade-off in vector-borne plant viruses: a review of (non-) existing studies. Phil. Trans. R. Soc. B 365, 1907–1918 (2010).

    CAS  PubMed  Google Scholar 

  • 54.

    Wickham, M. E., Brown, N. F., Boyle, E. C., Coombes, B. K. & Finlay, B. B. Virulence is positively selected by transmission success between mammalian hosts. Curr. Biol. 17, 783–788 (2007).

    CAS  PubMed  Google Scholar 

  • 55.

    Paul, R. E. L. et al. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections. BMC Evol. Biol. 4, 30 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Agnew, P. & Koella, J. C. Virulence, parasite mode of transmission, and host fluctuating asymmetry. Proc. R. Soc. Lond. B 264, 9–15 (1997).

    CAS  Google Scholar 

  • 57.

    Medica, D. L. & Sukhdeo, M. V. K. Estimating transmission potential in gastrointestinal nematodes (Order: Strongylida). J. Parasitol. 87, 442–446 (2001).

    CAS  PubMed  Google Scholar 

  • 58.

    Jäkel, T. et al. Reduction of transmission stages concomitant with increased host immune responses to hypervirulent Sarcocystis singaporensis, and natural selection for intermediate virulence. Int. J. Parasitol. 31, 1639–1647 (2001).

    PubMed  Google Scholar 

  • 59.

    Stott, I., Hodgson, D. J. & Townley, S. popdemo: an R package for population demography using projection matrix analysis. Methods Ecol. Evol. 3, 797–802 (2012).

    Google Scholar 

  • 60.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).


  • Source: Ecology - nature.com

    Pushing the envelope with fusion magnets

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair