in

Light environments affect herbivory patterns but not reproductive performance of a multivoltine specialist moth, Pareuchaetes pseudoinsulata

  • 1.

    Muth, N. Z., Kluger, E. C., Levy, J. H., Edwards, M. J. & Niesenbaum, R. A. Increased per capita herbivory in the shade: necessity, feedback, or luxury consumption?. Ecoscience 15, 182–188 (2008).

    Article  Google Scholar 

  • 2.

    Karolewski, P., Giertych, M. J., Żmuda, M., Jagodziński, A. M. & Oleksyn, J. Season and light affect constitutive defenses of understory shrub species against folivorous insects. Acta Oecol. 53, 19–32 (2013).

    ADS  Article  Google Scholar 

  • 3.

    Łukowski, A., Giertych, M. J., Zadworny, M., Mucha, J. & Karolewski, P. Preferential feeding and occupation of sunlit leaves favors defense response and development in the flea beetle, Altica brevicollis coryletorum: a pest of Corylus avellana. PLoS ONE 10(4), e0126072 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Uyi, O. O., Zachariades, C., Heshula, L. U. & Hill, M. P. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant. PLoS ONE 13(1), e0190700 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Moore, L. V., Myers, J. H. & Eng, R. Western tent caterpillars prefer the sunny side of the tree but why?. Oikos 51, 321–326 (1988).

    Article  Google Scholar 

  • 6.

    Sipura, M. & Tahvanainen, J. Shading enhances the quality of willow leaves to leaf beetles: but does it matter?. Oikos 91, 550–558 (2000).

    Article  Google Scholar 

  • 7.

    Henriksson, J. et al. Effects of host shading on consumption and growth of the geometrid Epirrita autumnata: interactive roles of water, primary and secondary compounds. Oikos 103, 3–16 (2003).

    CAS  Article  Google Scholar 

  • 8.

    Diaz, R. et al. Differential performance of Tropical Soda Apple and its biological control agent Gratiana boliviana (Coleoptera: Chrysomelidae) in open and shaded habitats. Environ. Entomol. 40, 1437–1447 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Uyi, O. O., Uwagiahanor, B. I. & Ejomah, A. J. The nocturnal larvae of a specialist folivore prefer Chromolaena odorata (L.) foliage from a sunny environment, but does it matter?. Arthropod Plant Interact. 11, 603–611 (2017).

    Article  Google Scholar 

  • 10.

    Moran, P. J. & Showler, A. T. Plant responses to water deficit and shade stresses in pigweed and their influence on feeding and oviposition by the beet armyworm (Lepidoptera: Noctuidae). Environ. Entomol. 34, 929–937 (2005).

    Article  Google Scholar 

  • 11.

    Uyi, O. O., Zachariades, C., Hill, M. P. & Conlong, D. The nocturnal larvae of a specialist folivore perform better on Chromolaena odorata leaves from a shaded environment. Entomol. Exp. Appl. 156, 187–199 (2015).

    Article  Google Scholar 

  • 12.

    Bryant, J. P., Chapin, F. S. III. & Klein, D. R. Carbon: nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40, 357–368 (1983).

    CAS  Article  Google Scholar 

  • 13.

    Bryant, J. P., Chapin, F. S. III., Reichardt, P. B. & Clausen, T. P. Response of winter chemical defence in Alaska paper birch and green alder to manipulation of plant carbon: nutrient balance. Oecologia 72, 510–514 (1987).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Herms, D. A. & Mattson, W. J. The dilemma of plants: to grow or defend. Q. Rev. Biol. 67, 283–335 (1992).

    Article  Google Scholar 

  • 15.

    Barber, N. A. & Marquis, R. J. Light environment and impact of foliage quality on herbivorous insect attack and bird predation. Oecologia 166, 401–409 (2011).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Barbehenn, R. V., Chen, Z., Karowe, D. N. & Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Change Biol. 10, 1565–1575 (2004).

    ADS  Article  Google Scholar 

  • 17.

    Barbehenn, R. V., Karowe, D. N. & Spickard, A. Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140, 86–95 (2004).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 18.

    Caswell, H., Reed, F. C., Stephenson, S. N. & Werner, P. Photosynthetic pathways and selective herbivory: a hypothesis. Am. Nat. 107, 465–480 (1973).

    CAS  Article  Google Scholar 

  • 19.

    Nokelainen, O., van Ripley, B. S., Bergen, E., Osborne, C. P. & Brakefield, P. M. Preference for C4 shade grasses increases hatchling performance in the butterfly, Bicyclus safitza. Ecol. Evol. 6, 5246–5255 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Uyi, O. O. & Igbinosa, I. B. The status of Chromolaena odorata and its biocontrol in West Africa,in Zachariades, C., Strathie, L.W., Day, M.D. & Muniappan, R. (eds). Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorataand other Eupatorieae, Nairobi, Kenya, 1–2 November 2010. Agricultural Research Council—Plant Protection Research Institute, Pretoria, South Africa, pp. 86–98 (2013).

  • 21.

    Uyi, O. O. et al. Chromolaena odorata invasion in Nigeria: a case for coordinated biological control. Manag. Biol. Invasions 5, 377–393 (2014).

    Article  Google Scholar 

  • 22.

    Zachariades, C., Day, M., Muniappan, R. & Reddy, G. V. P. Chromolaena odorata (L.) King and Robinson (Asteraceae). In Biological Control of Tropical Weeds Using Arthropods (eds Muniappan, R. et al.) 130–160 (Cambridge University Press, Cambridge, 2009).

    Google Scholar 

  • 23.

    Zhang, L. L. & Wen, D. Z. Structural and physiological responses of two invasive weeds, Mikania micrantha and Chromolaena odorata to contrasting light and soil water conditions. J. Plant. Res. 122, 69–79 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Muniappan, R., Sundaramurthy, V. T. & Virktamath, C. A. Distribution of Chromolaena odorata (Asteraceae) and bionomics and utilization of food by Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in India, in: Delfosse, E. S. (ed) Proceedings of the Seventh International Symposium on Biological Control of Weeds, 6–11 March, 1988, Rome, Italy, pp 401–409 (1989).

  • 25.

    Cruttwell, R. E. The insects of Eupatorium odoratum L. in Trinidad and their potential as agents for biological control. PhD Dissertation, University of the West Indies, Trinidad (1972).

  • 26.

    Cock, M. W. J. & Holloway, J. D. The history of, and prospects for, the biological control of Chromolaena odorata (Compositae) by Pareuchaetes pseudoinsulata Rego Barros and allies (Lepidoptera, Arctiidae). Bull. Entomol. Res. 72, 193–205 (1982).

    Article  Google Scholar 

  • 27.

    Uyi, O., Egbon, I. N. & Igbinosa, I. B. Discovery of, and studies on Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in southern Nigeria. Int. J. Trop. Insect Sci. 31, 199–203 (2011).

    Article  Google Scholar 

  • 28.

    Seibert, T. F. Biological control of the weed, Chromolaena odorata (Asteraceae) by Pareuchaetes pseudoinsulata (Lepidoptera: Arctiidae) in Guam and the Northern Mariana Islands. Entomophaga 35, 531–539 (1989).

    Article  Google Scholar 

  • 29.

    Braimah, H., Ekyem, S.O., Issah, U.S. & Mochiah, M. Social perceptions and ecological impacts following biological control of Chromolaena odorataby Pareuchaetes pseudoinsulatain the forest region of Ghana, in: Zachariades, C., Strathie, L. W., Day, M. D. & Muniappan, R. (eds) Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorataand other Eupatorieae, Nairobi, Kenya, 1–2 November 2010.Agricultural Research Council—Plant Protection Research Institute, Pretoria, South Africa pp. 110–116 (2013).

  • 30.

    Olckers, T. & Hulley, P. E. Host specificity tests on leaf-feeding insects: aberrations from the use of excised leaves. African Entomol. 2, 68–70 (1994).

    Google Scholar 

  • 31.

    Blossey, B. & Nötzold, R. Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. J. Ecol. 83, 887–889 (1995).

    Article  Google Scholar 

  • 32.

    Friberg, M. & Wiklund, C. Butterflies and plants: preference/performance studies in relation to plant size and the use of intact plants vs. cuttings. Entomol. Exp. Appl. 160, 201–208 (2016).

    CAS  Article  Google Scholar 

  • 33.

    Uyi, O. O., Hill, M. P. & Zachariades, C. Variation in host plant has no effect on the performance and fitness-related traits of the specialist herbivore, Pareuchaetes insulata. Entomol. Exp. Appl. 153, 64–75 (2014).

    Article  Google Scholar 

  • 34.

    Bakr, E. M. A new software for measuring leaf area, and area damaged by Tetranychus urticae Koch. J. Appl. Entomol. 129, 173–175 (2005).

    Article  Google Scholar 

  • 35.

    implications for insect defoliation. Steinbauer, M.J. Specific leaf weight as an indicator of juvenile leaf toughness in Tasmanian bluegum (Eucalyptus globulus ssp. globulus). Austral. For. 64, 32–37 (2001).

    Article  Google Scholar 

  • 36.

    Watanabe, F. S. & Olsen, S. R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. Proc. 29, 677–678 (1965).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Marais, J. P. Evaluation of acid hydrolysis procedures for the rapid determination of total non-structural carbohydrates in plant species. Agrochemophysica 11, 1–3 (1979).

    CAS  Google Scholar 

  • 38.

    Lockett, C. J., Dhileepan, K., Robinson, M. & Pukallus, K. J. Impact of a biological control agent, Chiasmia assimilis, on prickly acacia (Acacia nilotica ssp. indica) seedlings. Biol. Control 62, 183–188 (2012).

    Article  Google Scholar 

  • 39.

    Mäntylä, E., Klemola, T., Sirkiä, P. & Laaksonen, T. Low light reflectance may explain the attraction of birds to defoliated trees. Behav. Ecol. 19, 325–330 (2008).

    Article  Google Scholar 

  • 40.

    Uyi, O. O., Zachariades, C. & Hill, M. P. The life history traits of the arctiine moth Pareuchaetes insulata, a biological control agent of Chromolaena odorata in South Africa. Afr. Entomol. 22, 611–624 (2014).

    Article  Google Scholar 

  • 41.

    Awmack, C. S. & Leather, S. R. Host plant quality and fecundity in herbivorous insects. Annu. Rev. Entomol. 47, 817–844 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Łukowski, A., Giertych, M. J., Walczak, U., Baraniak, E. & Karolewski, P. Light conditions affect the performance of Yponomeuta evonymellus on its native host Prunus padus and the alien Prunus serotina. Bull. Entomol. Res. 107, 208–216 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 43.

    Behmer, S. T. Insect herbivore nutrient regulation. Annu. Rev. Entomol. 54, 165–187 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, Princeton, 2012).

    Google Scholar 

  • 45.

    Lee, K. P., Cory, J. S., Wilson, K., Raubenheimer, D. & Simpson, S. J. Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proc. R. Soc. Lond. B 273, 823–829 (2006).

    CAS  Google Scholar 

  • 46.

    Clissold, F. J. The biomechanics of chewing and plant fracture: mechanisms and implications. Adv. Insect Physiol. 34, 317–372 (2007).

    Article  Google Scholar 

  • 47.

    Raubenheimer, A. D., Lee, K. P. & Simpson, S. J. Does Bertrand’s rule apply to macronutrients?. Proc. R. Soc. B 272, 2429–2434 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 48.

    Boersma, M. & Elser, J. J. Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 49.

    Zehnder, C. & Hunter, M. D. More is not necessarily better: the impact of limiting and excessive nutrients on herbivore population growth rates. Ecol. Entomol. 34, 535–543 (2009).

    Article  Google Scholar 

  • 50.

    Lee, K. P., Behmer, S. T., Simpson, S. J. & Raubenheimer, D. A geometric analysis of nutrient regulation in the generalist caterpillar, Spodoptera littoralis (Boisduval). J. Insect Physiol. 48, 655–665 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 51.

    Clissold, F. J., Sanson, G. D. & Read, J. The paradoxical effects of nutrient ratios and supply rates on an outbreaking insect herbivore, the Australian plague locust. J. Anim. Ecol. 75, 1000–1013 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem

    Institute Professor Emeritus Mario Molina, environmental leader and Nobel laureate, dies at 77