in

Linkages between soil organic carbon fractions and carbon-hydrolyzing enzyme activities across riparian zones in the Three Gorges of China

  • 1.

    Wang, Y. et al. The effects of the reverse seasonal flooding on soil texture within the hydro-fluctuation belt in the Three Gorges reservoir, China. J. Soils Sediment. 18, 109–115, https://doi.org/10.1007/s11368-017-1725-1 (2017).

  • 2.

    Bejarano, M. D., Jansson, R. & Nilsson, C. The effects of hydropeaking on riverine plants: a review. Biol. Rev. Camb. Philos. Soc. 93, 658–673, https://doi.org/10.1111/brv.12362 (2018).

  • 3.

    D’Elia, A. H., Liles, G. C., Viers, J. H. & Smart, D. R. Deep carbon storage potential of buried floodplain soils. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-06494-4 (2017).

  • 4.

    Ye, C., Cheng, X., Zhang, K., Du, M. & Zhang, Q. Hydrologic pulsing affects denitrification rates and denitrifier communities in a revegetated riparian ecotone. Soil. Biol. Biochem. 115, 137–147, https://doi.org/10.1016/j.soilbio.2017.08.018 (2017).

  • 5.

    Amendola, D., Mutema, M., Rosolen, V. & Chaplot, V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 324, 9–17, https://doi.org/10.1016/j.geoderma.2018.03.005 (2018).

  • 6.

    Andersen, R., Grasset, L., Thormann, M. N., Rochefort, L. & Francez, A.-J. Changes in microbial community structure and function following Sphagnum peatland restoration. Soil. Biol. Biochem. 42, 291–301, https://doi.org/10.1016/j.soilbio.2009.11.006 (2010).

  • 7.

    Cheng, X., Luo, Y., Xu, X., Sherry, R. & Zhang, Q. Soil organic matter dynamics in a North America tallgrass prairie after 9 yr of experimental warming. Biogeosciences 8, 1487–1498, https://doi.org/10.5194/bg-8-1487-2011 (2011).

  • 8.

    Peng, C. R., Zhang, L., Qin, H. J. & Li, D. H. Revegetation in the water level fluctuation zone of a reservoir: An ideal measure to reduce the input of nutrients and sediment. Ecol. Eng. 71, 574–577, https://doi.org/10.1016/j.ecoleng.2014.07.078 (2014).

    • Article
    • Google Scholar
  • 9.

    Xie, X. L., Wang, W., Tian, W. W. & Xie, K. J. Waterlogging accelerates the loss of soil organic carbon from abandoned paddy fields in the hilly terrain in subtropical China. Sci. Rep. 7, https://doi.org/10.1038/s41598-017-14820-z (2017).

  • 10.

    Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. Climate change, human impacts, and carbon sequestration in China. P. Natl. A. Sci. 115, 4015–4020, https://doi.org/10.1073/pnas.1700304115 (2018).

  • 11.

    Guenet, B. et al. Impact of priming on global soil carbon stocks. Glob. Chang. Biol. 24, 1873–1883, https://doi.org/10.1111/gcb.14069 (2018).

  • 12.

    Allison, V. J., Condron, L. M., Peltzer, D. A., Richardson, S. J. & Turner, B. L. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand. Soil. Biol. Biochem. 39, 1770–1781, https://doi.org/10.1016/j.soilbio.2007.02.006 (2007).

  • 13.

    Bragazza, L. et al. Persistent high temperature and low precipitation reduce peat carbon accumulation. Glob. Change Biol. 22, 4114–4123, https://doi.org/10.1111/gcb.13319 (2016).

  • 14.

    Urbanova, Z., Strakova, P. & Kastovska, E. Response of peat biogeochemistry and soil organic matter quality to rewetting in bogs and spruce swamp forests. Eur. J. Soil. Biol. 85, 12–22, https://doi.org/10.1016/j.ejsobi.2017.12.004 (2018).

  • 15.

    Sinsabaugh, R. L., Hill, B. H. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462, 795, https://doi.org/10.1038/nature09548 (2009).s

  • 16.

    Xiao, W., Chen, X., Jing, X. & Zhu, B. A meta-analysis of soil extracellular enzyme activities in response to global change. Soil. Biol. Biochem. 123, 21–32, https://doi.org/10.1016/j.soilbio.2018.05.001 (2018).

  • 17.

    Sutfin, N. A., Wohl, E. E. & Dwire, K. A. Banking carbon: a review of organic carbon storage and physical factors influencing retention in floodplains and riparian ecosystems. Earth Surf. Proc. Land. 41, 38–60, https://doi.org/10.1002/esp.3857 (2016).

  • 18.

    Ye, C., Li, S., Zhang, Y., Tong, X. & Zhang, Q. Assessing heavy metal pollution in the water level fluctuation zone of China’s Three Gorges Reservoir using geochemical and soil microbial approaches. Environ. Monit. Assess. 185, 231–240, https://doi.org/10.1007/s10661-012-2547-7 (2013).

  • 19.

    Mackay, J. E., Cunningham, S. C. & Cavagnaro, T. R. Riparian reforestation: are there changes in soil carbon and soil microbial communities? Sci. Total. Env. 566-567, 960–967, https://doi.org/10.1016/j.scitotenv.2016.05.045 (2016).

  • 20.

    Deng, Q. et al. Soil microbial community and its interaction with soil carbon and nitrogen dynamics following afforestation in central China. Sci. Total. Env. 541, 230–237, https://doi.org/10.1016/j.scitotenv.2015.09.080 (2016).

  • 21.

    Chen, J. et al. Bacterial Communities in Riparian Sediments: A Large-Scale Longitudinal Distribution Pattern and Response to Dam Construction. Front. Microbiol. 9, 999, https://doi.org/10.3389/fmicb.2018.00999 (2018).

  • 22.

    Hok, L. et al. Enzymes and C pools as indicators of C build up in short-term conservation agriculture in a savanna ecosystem in Cambodia. Soil. Till. Res. 177, 125–133, https://doi.org/10.1016/j.still.2017.11.015 (2018).

    • Article
    • Google Scholar
  • 23.

    Ma, Y. T. et al. Bacterial and Fungal Community Composition and Functional Activity Associated with Lake Wetland Water Level Gradients. Sci. Rep. 8, https://doi.org/10.1038/s41598-018-19153-z (2018).

  • 24.

    Bowles, T. M., Acosta-Martínez, V., Calderón, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil. Biol. Biochem. 68, 252–262, https://doi.org/10.1016/j.soilbio.2013.10.004 (2014).

  • 25.

    Xu, G. et al. Labile, recalcitrant, microbial carbon and nitrogen and the microbial community composition at two Abies faxoniana forest elevations under elevated temperatures. Soil. Biol. Biochem. 91, 1–13, https://doi.org/10.1016/j.soilbio.2015.08.016 (2015).

  • 26.

    Bautista-Cruz, A. et al. Cultivation of Opuntia ficus-indica under different soil management practices: A possible sustainable agricultural system to promote soil carbon sequestration and increase soil microbial biomass and activity. Land. Degrad. Dev. 29, 38–46, https://doi.org/10.1002/ldr.2834 (2018).

    • Article
    • Google Scholar
  • 27.

    Belay-Tedla, A., Zhou, X., Su, B., Wan, S. & Luo, Y. Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clipping. Soil. Biol. Biochem. 41, 110–116, https://doi.org/10.1016/j.soilbio.2008.10.003 (2009).

  • 28.

    Zhang, Q. et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China. Land Degrad. Dev. https://doi.org/10.1002/ldr.3240 (2018).

  • 29.

    Burns, R. G. et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil. Biol. Biochem. 58, 216–234, https://doi.org/10.1016/j.soilbio.2012.11.009 (2013).

  • 30.

    Allison, S. D. Soil Minerals and Humic Acids Alter Enzyme Stability: Implications for Ecosystem Processes. Biogeochemistry 81, 361–373, https://doi.org/10.1007/s10533-006-9046-2 (2006).

  • 31.

    Quiquampoix, H. & Burns, R. G. Interactions between Proteins and Soil Mineral. Surfaces: Environ. Health Consequences. Elem. 3, 223–225 (2007).

    • Google Scholar
  • 32.

    Stone, M. M., DeForest, J. L. & Plante, A. F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil. Biol. Biochem. 75, 237–247, https://doi.org/10.1016/j.soilbio.2014.04.017 (2014).

  • 33.

    Ye, C., Zhang, K., Deng, Q. & Zhang, Q. Plant communities in relation to flooding and soil characteristics in the water level fluctuation zone of the Three Gorges Reservoir, China. Environ. Sci. Pollut. Res. Int. 20, 1794–1802, https://doi.org/10.1007/s11356-012-1148-x (2013).

  • 34.

    Abbott, B. W., Jones, J. B., Godsey, S. E., Larouche, J. R. & Bowden, W. B. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12, 3725–3740, https://doi.org/10.5194/bg-12-3725-2015 (2015).

  • 35.

    New, T. & Xie, Z. Impacts of large dams on riparian vegetation: applying global experience to the case of China’s Three Gorges Dam. Biodivers. Conserv. 17, 3149–3163, https://doi.org/10.1007/s10531-008-9416-2 (2008).

    • Article
    • Google Scholar
  • 36.

    Zhang, S. et al. Organic carbon accumulation capability of two typical tidal wetland soils in Chongming Dongtan, China. J. Environ. Sci.-China 23, 87–94, https://doi.org/10.1016/s1001-0742(10)60377-4 (2011).

  • 37.

    Guenet, B. et al. The impact of long-term CO 2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma 170, 331–336 (2012).

  • 38.

    Bao, Y., Gao, P. & He, X. The water-level fluctuation zone of Three Gorges Reservoir — A unique geomorphological unit. Earth-Sci. Rev. 150, 14–24, https://doi.org/10.1016/j.earscirev.2015.07.005 (2015).

  • 39.

    Ye, F. et al. Soil properties and distribution in the riparian zone: the effects of fluctuations in water and anthropogenic disturbances. Eur. J. Soil Sci., https://doi.org/10.1111/ejss.12756 (2019).

  • 40.

    Liu, H. et al. Shifting plant species composition in response to climate change stabilizes grassland primary production. P. Natl. A. Sci. 115, 4051–4056, https://doi.org/10.1073/pnas.1700299114 (2018).

  • 41.

    Cenini, V. L. et al. Linkages between extracellular enzyme activities and the carbon and nitrogen content of grassland soils. Soil. Biol. Biochem. 96, 198–206, https://doi.org/10.1016/j.soilbio.2016.02.015 (2016).

  • 42.

    Feng, J. et al. Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China. Sci. Total. Env. 640-641, 653–661, https://doi.org/10.1016/j.scitotenv.2018.05.332 (2018).

  • 43.

    Pereira, G. H. A., Jordao, H. C. K., Silva, V. F. V. & Pereira, M. G. Litter and nutrient flows in tropical upland forest flooded by a hydropower plant in the Amazonian basin. Sci. Total. Environ. 572, 157–168, https://doi.org/10.1016/j.scitotenv.2016.07.177 (2016).

  • 44.

    Lian, Z. et al. Labile and recalcitrant sediment organic carbon pools in the Pearl River Estuary, southern China. Sci. Total. Environ. 640-641, 1302–1311, https://doi.org/10.1016/j.scitotenv.2018.05.389 (2018).

  • 45.

    Yang, W. et al. Shift in soil organic carbon and nitrogen pools in different reclaimed lands following intensive coastal reclamation on the coasts of eastern China. Sci. Rep. 9, https://doi.org/10.1038/s41598-019-42048-6 (2019).

  • 46.

    Cao, L. et al. Characterization of Labile Organic Carbon in Different Coastal Wetland Soils of Laizhou Bay, Bohai Sea. Wetlands 37, 163–175, https://doi.org/10.1007/s13157-016-0858-0 (2016).

  • 47.

    Xiao, Y., Huang, Z. & Lu, X. Changes of soil labile organic carbon fractions and their relation to soil microbial characteristics in four typical wetlands of Sanjiang Plain, Northeast China. Ecol. Eng. 82, 381–389, https://doi.org/10.1016/j.ecoleng.2015.05.015 (2015).

    • Article
    • Google Scholar
  • 48.

    Luo, L., Meng, H. & Gu, J. D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems. J. Environ. Manage. 197, 539–549, https://doi.org/10.1016/j.jenvman.2017.04.023 (2017).

  • 49.

    Nave, L. E. et al. Soil hydrology, physical and chemical properties and the distribution of carbon and mercury in a postglacial lake-plain wetland. Geoderma 305, 40–52, https://doi.org/10.1016/j.geoderma.2017.05.035 (2017).

  • 50.

    Sinsabaugh, R. L. & Follstad Shah, J. J. Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102, 31–43, https://doi.org/10.1007/s10533-010-9482-x (2010).

  • 51.

    Yang, F. et al. Soil bacterial community composition and diversity in relation to edaphic properties and plant traits in grasslands of southern China. Appl. Soil. Ecol. 128, 43–53, https://doi.org/10.1016/j.apsoil.2018.04.001 (2018).

    • Article
    • Google Scholar
  • 52.

    Rovira, P. & Ramón Vallejo, V. Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil. Biol. Biochem. 39, 202–215, https://doi.org/10.1016/j.soilbio.2006.07.021 (2007).

  • 53.

    Jian, S. et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: A meta-analysis. Soil. Biol. Biochem. 101, 32–43, https://doi.org/10.1016/j.soilbio.2016.07.003 (2016).

  • 54.

    DeForest, J. L. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and l-DOPA. Soil. Biol. Biochem. 41, 1180–1186, https://doi.org/10.1016/j.soilbio.2009.02.029 (2009).

  • 55.

    Raiesi, F. & Beheshti, A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl. Soil. Ecosl. 75, 63–70, https://doi.org/10.1016/j.apsoil.2013.10.012 (2014).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Towable sensor free-falls to measure vertical slices of ocean conditions

    The quest for practical fusion energy sources