in

Lysogenic host–virus interactions in SAR11 marine bacteria

  • 1.

    Rohwer, F. & Thurber, R. V. Viruses manipulate the marine environment. Nature 459, 207–212 (2009).

  • 2.

    Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).

  • 3.

    Stewart, F. M. & Levin, B. R. The population biology of bacterial viruses: why be temperate. Theor. Popul. Biol. 26, 93–117 (1984).

  • 4.

    Jiang, S. & Paul, J. Significance of lysogeny in the marine environment: studies with isolates and a model of lysogenic phage production. Microb. Ecol. 35, 235–243 (1998).

  • 5.

    Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

  • 6.

    Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).

  • 7.

    Kang, H. S. et al. Prophage genomics reveals patterns in phage genome organization and replication. Preprint at bioRxiv https://doi.org/10.1101/114819 (2017).

  • 8.

    Zhao, Y. et al. Abundant SAR11 viruses in the ocean. Nature 494, 357–360 (2013).

  • 9.

    Våge, S., Storesund, J. E. & Thingstad, T. F. SAR11 viruses and defensive host strains. Nature 499, E3–E4 (2013).

  • 10.

    Giovannoni, S., Temperton, B. & Zhao, Y. Giovannoni et al. reply. Nature 499, E4–E5 (2013).

  • 11.

    Thingstad, T. F. & Bratbak, G. Microbial oceanography: viral strategies at sea. Nature 531, 454–455 (2016).

  • 12.

    Wigington, C. H. et al. Re-examination of the relationship between marine virus and microbial cell abundances. Nat. Microbiol. 1, 15024 (2016).

  • 13.

    Parikka, K. J., Le Romancer, M., Wauters, N. & Jacquet, S. Deciphering the virus‐to‐prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biol. Rev. 92, 1081–1100 (2017).

  • 14.

    Knowles, B. & Rohwer, F. Knowles & Rohwer reply. Nature 549, E3–E4 (2017).

  • 15.

    Weitz, J. S., Beckett, S. J., Brum, J. R., Cael, B. & Dushoff, J. Lysis, lysogeny and virus–microbe ratios. Nature 549, E1–E3 (2017).

  • 16.

    Morris, R. M. et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810 (2002).

  • 17.

    Giovannoni, S. J. SAR11 bacteria: the most abundant plankton in the oceans. Annu. Rev. Mar. Sci. 9, 231–255 (2017).

    • Article
    • Google Scholar
  • 18.

    Jiang, S. C. & Paul, J. H. Seasonal and diel abundance of viruses and occurrence of lysogeny/bacteriocinogeny in the marine environment. Mar. Ecol. Prog. Ser. 104, 163–172 (1994).

    • Article
    • Google Scholar
  • 19.

    Jiang, S. C. & Paul, J. H. Occurrence of lysogenic bacteria in marine microbial communities as determined by prophage induction. Mar. Ecol. Prog. Ser. 142, 27–38 (1996).

    • Article
    • Google Scholar
  • 20.

    Leitet, C., Riemann, L. & Hagström, Å. Plasmids and prophages in Baltic Sea bacterioplankton isolates. J. Mar. Biol. Assoc. UK 86, 567–575 (2006).

  • 21.

    Paul, J. H. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2, 579–589 (2008).

  • 22.

    Durham, B. P. et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat. Microbiol. 4, 1706–1715 (2019).

  • 23.

    Rappe, M. S., Connon, S. A., Vergin, K. L. & Giovannoni, S. J. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633 (2002).

  • 24.

    Giovannoni, S. J., Britschgi, T. B., Moyer, C. L. & Field, K. G. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63 (1990).

  • 25.

    Giovannoni, S. J. et al. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85 (2005).

  • 26.

    Giovannoni, S. J. et al. Genome streamlining in a cosmopolitan oceanic bacterium. Science 309, 1242–1245 (2005).

  • 27.

    Fogg, P. C., Colloms, S., Rosser, S., Stark, M. & Smith, M. C. New applications for phage integrases. J. Mol. Biol. 426, 2703–2716 (2014).

  • 28.

    Ptashne, M. Principles of a switch. Nat. Chem. Biol. 7, 484–487 (2011).

  • 29.

    Owen, S. V. et al. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front. Microbiol. 8, 235 (2017).

  • 30.

    Hay, I. D. & Lithgow, T. Filamentous phages: masters of a microbial sharing economy. EMBO Rep. 20, e47427 (2019).

  • 31.

    Weitz, J. S., Li, G., Gulbudak, H., Cortez, M. H. & Whitaker, R. J. Viral invasion fitness across a continuum from lysis to latency. Virus Evol. 5, vez006 (2019).

  • 32.

    Toyofuku, M., Nomura, N. & Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13–24 (2019).

  • 33.

    Biller, S. J. et al. Bacterial vesicles in marine ecosystems. Science 343, 183–186 (2014).

  • 34.

    Biller, S. J. et al. Membrane vesicles in seawater: heterogeneous DNA content and implications for viral abundance estimates. ISME J. 11, 394–404 (2017).

  • 35.

    Carini, P., Steindler, L., Beszteri, S. & Giovannoni, S. J. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J. 7, 592–602 (2013).

  • 36.

    Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

  • 37.

    Ofir, G. & Sorek, R. Vesicles spread susceptibility to phages. Cell 168, 13–15 (2017).

  • 38.

    Mizuno, C. M., Rodriguez-Valera, F., Kimes, N. E. & Ghai, R. Expanding the marine virosphere using metagenomics. PLoS Genet. 9, e1003987 (2013).

  • 39.

    Beaulaurier, J. et al. Assembly-free single-molecule nanopore sequencing recovers complete virus genomes from natural microbial communities. Genome Res. 30, 437–446 (2020).

  • 40.

    Deschamps, P., Zivanovic, Y., Moreira, D., Rodriguez-Valera, F. & López-García, P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic Thaumarchaeota and Euryarchaeota. Genome Biol. Evol. 6, 1549–1563 (2014).

  • 41.

    Chen, L. X. et al. Wide distribution of phage that infect freshwater SAR11 bacteria. mSystems 4, e00410-19 (2019).

  • 42.

    Zhao, Y. et al. Pelagiphages in the Podoviridae family integrate into host genomes. Environ. Microbiol. 21, 1989–2001 (2019).

  • 43.

    Chin, C. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).

  • 44.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

  • 45.

    Alikhan, N., Petty, N. K., Zakour, N. L. B. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics 12, 402 (2011).

  • 46.

    Noble, R. T. & Fuhrman, J. A. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118 (1998).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Adaptation of the master antioxidant response connects metabolism, lifespan and feather development pathways in birds

    Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation