in

Mast seeding patterns are asynchronous at a continental scale

  • 1.

    Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89, 621–634 (2008).

    • Article
    • Google Scholar
  • 2.

    Ostfeld, R. S. & Keesing, F. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evol. 15, 232–237 (2000).

  • 3.

    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470 (1994).

  • 4.

    Silvertown, J. W. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250 (1980).

    • Article
    • Google Scholar
  • 5.

    Pearse, I. S., LaMontagne, J. M. & Koenig, W. D. Inter-annual variation in seed production has increased over time (1900–2014). Proc. R. Soc. B 284, 20171666 (2017).

  • 6.

    Fernández-Martínez, M. et al. Nutrient scarcity as a selective pressure for mast seeding. Nat. Plants 5, 1222–1228 (2019).

    • Article
    • Google Scholar
  • 7.

    Kelly, D., Koenig, W. D. & Liebhold, A. M. An intercontinental comparison of the dynamic behavior of mast seeding communities. Popul. Ecol. 50, 329–342 (2008).

    • Article
    • Google Scholar
  • 8.

    Koenig, W. D. & Knops, J. M. H. Scale of mast-seeding and tree-ring growth. Nature 396, 225–226 (1998).

  • 9.

    Krebs, C. J., LaMontagne, J. M., Kenney, A. J. & Boutin, S. Climatic determinants of white spruce cone crops in the boreal forest of southwestern Yukon. Botany 90, 113–119 (2012).

    • Article
    • Google Scholar
  • 10.

    Strong, C., Zuckerberg, B., Betancourt, J. L. & Koenig, W. D. Climatic dipoles drive two principal modes of North American boreal bird irruption. Proc. Natl Acad. Sci. USA 112, 2795–2802 (2015).

    • Article
    • Google Scholar
  • 11.

    Zuckerberg, B. et al. Climate dipoles as continental drivers of plant and animal populations. Trends Ecol. Evol. 35, 440–453 (2020).

    • Article
    • Google Scholar
  • 12.

    Mooney, K. A., Linhart, Y. B. & Snyder, M. A. Masting in ponderosa pine: comparisons of pollen and seed over space and time. Oecologia 165, 651–661 (2011).

    • Article
    • Google Scholar
  • 13.

    Norton, D. A. & Kelly, D. Mast seeding over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct. Ecol. 2, 399–408 (1988).

    • Article
    • Google Scholar
  • 14.

    Koenig, W. D. & Knops, J. M. H. Seed-crop size and eruptions of North American boreal seed-eating birds. J. Anim. Ecol. 70, 609–620 (2001).

    • Article
    • Google Scholar
  • 15.

    Garrison, B. A., Koenig, W. D. & Knops, J. M. H. Spatial synchrony and temporal patterns in acorn production of California black oaks. In Proc. 6th Symposium on Oak Woodlands: Today’s Challenges, Tomorrow’s Opportunities. Pacific SW Forest and Range Experimental Station General Technical Report PSW-GTR-217 (eds Merenlender, A. et al.) 343–356 (USDA Forest Service, 2008).

  • 16.

    Koenig, W. D. K. & Knops, J. M. H. Large-scale spatial synchrony and cross-synchrony in acorn production by two California oaks. Ecology 94, 83–93 (2013).

    • Article
    • Google Scholar
  • 17.

    Liebhold, A. et al. Within-population spatialsynchrony in mast seeding of North American oaks. Oikos 104, 156–164 (2004).

    • Article
    • Google Scholar
  • 18.

    LaMontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. 95, 991–1000 (2007).

    • Article
    • Google Scholar
  • 19.

    Koenig, W. D. & Knops, J. M. H. Patterns of annual seed production by Northern Hemisphere trees: a global perspective. Am. Nat. 155, 59–69 (2000).

    • Article
    • Google Scholar
  • 20.

    Owens, J. N. & Blake, M. D. Forest Tree Seed Production: a review of the literature and recommendations for future research. Petawawa National Forestry Institute Information Report PI-X-53 (Canadian Forestry Service, 1985).

  • 21.

    Liebhold, A., Koenig, W. D. & Bjornstad, O. N. Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490 (2004).

    • Article
    • Google Scholar
  • 22.

    Moran, P. A. P. The statistical analysis of the Canadian lynx cycle. II. Synchronization and meteorology. Aust. J. Zool. 1, 291–298 (1953).

    • Article
    • Google Scholar
  • 23.

    Royama, T. Analytical Population Dynamics (Chapman & Hall, 1992).

  • 24.

    Koenig, W. D. Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288 (2002).

    • Article
    • Google Scholar
  • 25.

    Pearse, I. S., Koenig, W. D. & Kelly, D. Mechanisms of mast seeding: resources, weather, cues, and selection. N. Phytol. 212, 546–562 (2016).

  • 26.

    Janzen, D. H. Seed predation by animals. Annu. Rev. Ecol. Syst. 2, 465–492 (1971).

    • Article
    • Google Scholar
  • 27.

    Bogdziewicz, M. B. et al. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production. Ecology 98, 2615–2625 (2017).

    • Article
    • Google Scholar
  • 28.

    Selås, V., Piovesan, G., Adams, J. M. & Bernabei, M. Climatic factors controlling reproduction and growth of Norway spruce in southern Norway. Can. J. For. Res. 225, 217–225 (2002).

    • Article
    • Google Scholar
  • 29.

    Schauber, E. M. et al. Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83, 1214–1225 (2002).

    • Article
    • Google Scholar
  • 30.

    Roland, C. A., Schmidt, J. H. & Johnstone, J. F. Climate sensitivity of reproduction in a mast-seeding boreal conifer across its distributional range from lowland to treeline forests. Oecologia 174, 665–677 (2014).

    • Article
    • Google Scholar
  • 31.

    Kelly, D. et al. Of mast and mean: differential-temperature cue makes mast seeding insensitive to climate change. Ecol. Lett. 16, 90–98 (2013).

    • Article
    • Google Scholar
  • 32.

    Övergaard, R., Gemmel, P. & Karlsson, M. Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80, 555–565 (2007).

    • Article
    • Google Scholar
  • 33.

    Sala, A., Hopping, K., Mcintire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (Pinus albicaulis) depletes stored nutrients. N. Phytol. 196, 189–199 (2012).

  • 34.

    Vacchiano, G. et al. Spatial patterns and broad-scale weather cues of beech mast seeding in Europe. N. Phytol. 215, 595–608 (2017).

    • Article
    • Google Scholar
  • 35.

    Koenig, W. D., Knops, J. M. H., Pesendorfer, M. B., Zaya, D. N. & Ashley, M. V. Drivers of synchrony of acorn production in the valley oak (Quercus lobata) at two spatial scales. Ecology 98, 3056–3062 (2017).

    • Article
    • Google Scholar
  • 36.

    Ascoli, D. et al. Inter-annual and decadal changes in teleconnections drive continental-scale synchronization of tree reproduction. Nat. Commun. 8, 2205 (2017).

    • Article
    • Google Scholar
  • 37.

    Dale, M., Francis, S., Krebs, C. J. & Nams, V. O. in Ecosystem Dynamics of the Boreal Forest: the Kluane Project. (eds Krebs, C. J. et al.) 116–137 (Oxford Univ. Press, 2001).

  • 38.

    Nienstaedt, H. & Zasada, J. C. in Silvics of North America: Volume 1. Conifers Agricultural Handbook 654 (eds Burns, R. M. & Honkala, B. H.) 204–226 (Department of Agriculture and Forest Service, 1990).

  • 39.

    Hijmans, R. J., Williams, E. & Vennes, C. geosphere: Spherical Trigonometry. R package version 1.5-7 (2017); https://cran.r-project.org/web/packages/geosphere/

  • 40.

    Thornton, M. M. et al. Daymet: Monthly Climate Summaries on a 1-km Grid for North America, Version 3 (ORNL DAAC, 2016); https://doi.org/10.3334/ORNLDAAC/1345

  • 41.

    Koenig, W. D. & Knops, J. M. H. Testing for spatial autocorrelation in ecological studies. Ecography 21, 423–429 (1998).

    • Article
    • Google Scholar
  • 42.

    Canty, A. & Ripley, B. boot: Bootstrap Functions. R package version 1.3-20. https://cran.r-project.org/web/packages/boot/ (2017).

  • 43.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. https://doi.org/10.18637/jss.v022.i07 (2007).

  • 44.

    Koenig, W. D., Walters, E. L. & Rodewald, P. G. Testing alternative hypotheses for the cause of population declines: the case of the red-headed woodpecker. Condor 119, 143–154 (2017).

    • Article
    • Google Scholar
  • 45.

    Haynes, K. J. et al. Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers Proc. R. Soc. B 280, 20122373 (2013).

  • 46.

    LaMontagne, J. M. & Boutin, S. Quantitative methods for defining mast-seeding years across species and studies. J. Veg. Sci. 20, 745–753 (2009).

    • Article
    • Google Scholar
  • 47.

    Dormann, F. C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    • Article
    • Google Scholar
  • 48.

    Bjornstad, O. N. & Cai, J. ncf: spatial covariance functions. R package version 1.2-3 (2018); https://cran.r-project.org/web/packages/ncf/

  • 49.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    • Article
    • Google Scholar
  • 50.

    Bates, D. et al. lme4: Linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-18-1 (2018); https://cran.r-project.org/web/packages/lme4/

  • 51.

    Barton, K. MuMIn: Multi-model inference. R package version 1.43.6 (2019); https://cran.r-project.org/web/packages/MuMIn/


  • Source: Ecology - nature.com

    Associate Professor Amy Moran-Thomas receives the 2020 Levitan Prize in the Humanities

    Engineers develop precision injection system for plants