in

Microbial deterioration and sustainable conservation of stone monuments and buildings

  • 1.

    Dornieden, T., Gorbushina, A. & Krumbein, W. Biodecay of cultural heritage as a space/time-related ecological situation—an evaluation of a series of studies. Int. Biodeterior. Biodegrad. 46, 261–270 (2000).

    CAS  Google Scholar 

  • 2.

    Warscheid, T. et al. Studies on the temporal development of microbial infection of different types of sedimentary rocks and its effect on the alteration of the physico-chemical properties in building materials. In Conservation of stone and other materials: Proc. of the International RILEM/UNESCO congress held at the UNESCO headquarters (ed. Thiel, M.-J.) 303–310 (E. & F.N. Spon Ltd, 1993).

  • 3.

    Gadd, G. M. Geomicrobiology of the built environment. Nat. Microbiol. 2, 16275 (2017).

    CAS  Google Scholar 

  • 4.

    Pinna, D. Coping with Biological Growth on Stone Heritage Objects: Methods, Products, Applications, and Perspectives (Apple Academic Press, 2017).

  • 5.

    Onofri, S., Zucconi, L., Isola, D. & Selbmann, L. Rock-inhabiting fungi and their role in deterioration of stone monuments in the Mediterranean area. Plant Biosyst. 148, 384–391 (2014).

    Google Scholar 

  • 6.

    Villa, F., Stewart, P. S., Klapper, I., Jacob, J. M. & Cappitelli, F. Subaerial biofilms on outdoor stone monuments: changing the perspective toward an ecological framework. BioScience 66, 285–294 (2016).

    Google Scholar 

  • 7.

    Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegrad. 46, 343–368 (2000).

    CAS  Google Scholar 

  • 8.

    Saiz-Jimenez, C. Biogeochemistry of weathering processes in monuments. Geomicrobiol. J. 16, 27–37 (1999).

    CAS  Google Scholar 

  • 9.

    Chen, J., Blume, H.-P. & Beyer, L. Weathering of rocks induced by lichen colonization — a review. Catena 39, 121–146 (2000).

    CAS  Google Scholar 

  • 10.

    Martino, P. D. What about biofilms on the surface of stone monuments? Open Conf. Proc. J. 6, 14–28 (2016).

    Google Scholar 

  • 11.

    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 351–363 (Wiley, 2011).

  • 12.

    Polynov, B. The first stages of soil formation on massive crystaline rocks. Pochvovedeniye 7, 325–339 (1945).

    Google Scholar 

  • 13.

    Vernadskiy, V. Geochemical Essays (Ocherki geokhimii) (Leningrad State Publishing House, 1927).

  • 14.

    Krasil’nikov, N. The role of microorganisms in the weathering of rocks. Mikrobiologiya 18, 318–323 (1949).

    Google Scholar 

  • 15.

    Yarilova, Y. A. The role of lithophilous lichens in the weathering of massive crystalline rocks. Pochvovedeniye 3, 533–548 (1947).

    Google Scholar 

  • 16.

    Pochon, J., Tardieux, P., Lajudie, J. & Charpentier, M. Degradation des temples d’Angkor et processus biologiques. Ann. Inst. Pasteur 98, 457–461 (1960).

    Google Scholar 

  • 17.

    Pochon, J. & Jaton, C. in Biodeterioration of Materials (eds. Wolters, A. H. & Elphich, C. C.) 258–268 (Elsevier, 1968).

  • 18.

    Pochon, J. & Jaton, C. The role of microbiological agencies in the deterioration of stone. Chem. Ind. 9, 1587–1589 (1967).

    Google Scholar 

  • 19.

    Paquet, J. Contribution a l’etude de la maladie de la pierre: new hypothese sur les causes des transferts et des concentrations de sulfate produisant les effets foliants. Mon. His. France 10, 73–88 (1964).

    Google Scholar 

  • 20.

    Hueck, H. in Biodeterioration of Materials. Microbiological and Allied Aspects (eds Walters, A. H. & Elphick, J. J.) 6–12 (Elsevier Publishing Co. Ltd, 1968).

  • 21.

    Gaylarde, P. & Gaylarde, C. Deterioration of siliceous stone monuments in Latin America: microorganisms and mechanisms. Corros. Rev. 22, 395–416 (2004).

    CAS  Google Scholar 

  • 22.

    Uchida, E., Ogawa, Y., Maeda, N. & Nakagawa, T. Deterioration of stone materials in the Angkor monuments, Cambodia. Eng. Geol. 55, 101–112 (2000).

    Google Scholar 

  • 23.

    Caneva, G., Bartoli, F., Savo, V., Futagami, Y. & Strona, G. Combining statistical tools and ecological assessments in the study of biodeterioration patterns of stone temples in Angkor (Cambodia). Sci. Rep. 6, 32601 (2016).

    CAS  Google Scholar 

  • 24.

    Meng, H., Katayama, Y. & Gu, J.-D. More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. Int. Biodeterior. Biodegrad. 117, 78–88 (2017).

    CAS  Google Scholar 

  • 25.

    Zammit, G., Sánchez-Moral, S. & Albertano, P. Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci. Total Environ. 409, 2773–2782 (2011).

    CAS  Google Scholar 

  • 26.

    McNamara, C. J., Perry, T. D., Bearce, K. A., Hernandez-Duque, G. & Mitchell, R. Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb. Ecol. 51, 51–64 (2006).

    Google Scholar 

  • 27.

    Ortega-Morales, B. O. et al. Bioweathering potential of cultivable fungi associated with semi-arid surface microhabitats of Mayan buildings. Front. Microbiol. 7, 201 (2016).

    Google Scholar 

  • 28.

    Cappitelli, F., Principi, P., Pedrazzani, R., Toniolo, L. & Sorlini, C. Bacterial and fungal deterioration of the Milan Cathedral marble treated with protective synthetic resins. Sci. Total Environ. 385, 172–181 (2007).

    CAS  Google Scholar 

  • 29.

    Rosado, T. et al. Pink! Why not? On the unusual colour of Évora Cathedral. Int. Biodeterior. Biodegrad. 94, 121–127 (2014).

    CAS  Google Scholar 

  • 30.

    Schiavon, N. et al. A multianalytical approach to investigate stone biodeterioration at a UNESCO world heritage site: the volcanic rock-hewn churches of Lalibela, Northern Ethiopia. Appl. Phys. A 113, 843–854 (2013).

    CAS  Google Scholar 

  • 31.

    Guillitte, O. Bioreceptivity: a new concept for building ecology studies. Sci. Total Environ. 167, 215–220 (1995).

    CAS  Google Scholar 

  • 32.

    Warscheid, T. & Leisen, H. in Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series (eds Charola, A. E. et al.) 1–18 (Smithsonian Institution Scholarly Press, 2011).

  • 33.

    Warscheid, T., Oelting, M. & Krumbein, W. E. Physico-chemical aspects of biodeterioration processes on rocks with special regard to organic pollutants. Int. Biodeterior. Biodegrad. 28, 37–48 (1991).

    CAS  Google Scholar 

  • 34.

    Haack, T. K. & McFeters, G. A. Nutritional relationships among microorganisms in an epilithic biofilm community. Microb. Ecol. 8, 115–126 (1982).

    CAS  Google Scholar 

  • 35.

    Liu, X., Meng, H., Wang, Y., Katayama, Y. & Gu, J.-D. Water is a critical factor in evaluating and assessing microbial colonization and destruction of Angkor sandstone monuments. Int. Biodeterior. Biodegrad. 133, 9–16 (2018).

    CAS  Google Scholar 

  • 36.

    Prieto, B. & Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 56, 206–215 (2005).

    CAS  Google Scholar 

  • 37.

    Miller, A. Z. et al. Bioreceptivity of building stones: a review. Sci. Total Environ. 426, 1–12 (2012).

    CAS  Google Scholar 

  • 38.

    Warscheid, T. et al. Biodeterioration studies on soapstone, quartzite & sandstones of historical monuments in Brazil and Germany. Preliminary results and evaluation for restoration practices. In Proc. of the 7th International Congress on Deterioration and Conservation of Stone 491–500 (Laboratório Nacional de Engenharia Civil, 1992).

  • 39.

    Beck, K., Al-Mukhtar, M., Rozenbaum, O. & Rautureau, M. Characterization, water transfer properties and deterioration in tuffeau: building material in the Loire valley—France. Build. Environ. 38, 1151–1162 (2003).

    Google Scholar 

  • 40.

    Sousa, L. M. O., Suárez del Río, L. M., Calleja, L., Ruiz de Argandoña, V. G. & Rey, A. R. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng. Geol. 77, 153–168 (2005).

    Google Scholar 

  • 41.

    Koestler, R., Warscheid, T. & Nieto, F. in Saving our Architectural Heritage: The Conservation of Historic Stone Structures (eds Baer, N. S. & Snethlage, R.) 25–36 (Wiley, 1997).

  • 42.

    Miller, A. Z., Dionísio, A., Laiz, L., Macedo, M. F. & Saiz-Jimenez, C. The influence of inherent properties of building limestones on their bioreceptivity to phototrophic microorganisms. Ann. Microbiol. 59, 705–713 (2009).

    CAS  Google Scholar 

  • 43.

    Tiano, P., Accolla, P. & Tomaselli, L. Phototrophic biodeteriogens on lithoid surfaces: an ecological study. Microb. Ecol. 29, 299–309 (1995).

    CAS  Google Scholar 

  • 44.

    Vázquez-Nion, D., Silva, B. & Prieto, B. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci. Total Environ. 610–611, 44–54 (2018).

    Google Scholar 

  • 45.

    Miller, A., Dionísio, A. & Macedo, M. F. Primary bioreceptivity: a comparative study of different Portuguese lithotypes. Int. Biodeterior. Biodegrad. 57, 136–142 (2006).

    CAS  Google Scholar 

  • 46.

    Hunt, J. M. Distribution of hydrocarbons in sedimentary rocks. Geochim. Cosmochim. Acta 22, 37–49 (1961).

    CAS  Google Scholar 

  • 47.

    Carter, N. & Viles, H. Lichen hotspots: raised rock temperatures beneath Verrucaria nigrescens on limestone. Geomorphology 62, 1–16 (2004).

    Google Scholar 

  • 48.

    Castanier, S., Le Métayer-Levrel, G. & Perthuisot, J.-P. Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment. Geol. 126, 9–23 (1999).

    CAS  Google Scholar 

  • 49.

    Leavengood, P., Twilley, J. & Asmus, J. F. Lichen removal from Chinese Spirit Path figures of marble. J. Cult. Herit. 1, S71–S74 (2000).

    Google Scholar 

  • 50.

    Gu, J.-D., Ford, T. E. & Mitchell, R. in Uhlig’s Corrosion Handbook 3rd edn (ed. Revie, R. W.) 451–460 (Wiley, 2011).

  • 51.

    Roig, P. B., Regidor Ros, J. L. & Estellés, R. M. Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int. Biodeterior. Biodegrad. 84, 266–274 (2013).

    CAS  Google Scholar 

  • 52.

    Šimonovičová, A., Gódyová, M. & Ševc, J. Airborne and soil microfungi as contaminants of stone in a hypogean cemetery. Int. Biodeterior. Biodegrad. 54, 7–11 (2004).

    Google Scholar 

  • 53.

    Lan, W., Li, H., Wang, W.-D., Katayama, Y. & Gu, J.-D. Microbial community analysis of fresh and old microbial biofilms on Bayon Temple Sandstone of Angkor Thom, Cambodia. Microb. Ecol. 60, 105–115 (2010).

    Google Scholar 

  • 54.

    Bartoli, F. et al. Biological colonization patterns on the ruins of Angkor temples (Cambodia) in the biodeterioration vs bioprotection debate. Int. Biodeterior. Biodegrad. 96, 157–165 (2014).

    Google Scholar 

  • 55.

    Xu, H.-B. et al. Lithoautotrophical oxidation of elemental sulfur by fungi including Fusarium solani isolated from sandstone Angkor temples. Int. Biodeterior. Biodegrad. 126, 95–102 (2018).

    CAS  Google Scholar 

  • 56.

    Kusumi, A., Li, X. S. & Katayama, Y. Mycobacteria isolated from Angkor monument sandstones grow chemolithoautotrophically by oxidizing elemental sulfur. Front. Microbiol. 2, 104 (2011).

    CAS  Google Scholar 

  • 57.

    Caneva, G. et al. Exploring ecological relationships in the biodeterioration patterns of Angkor temples (Cambodia) along a forest canopy gradient. J. Cult. Herit. 16, 728–735 (2015).

    Google Scholar 

  • 58.

    Kemmling, A., Kämper, M., Flies, C., Schieweck, O. & Hoppert, M. Biofilms and extracellular matrices on geomaterials. Environ. Geol. 46, 429–435 (2004).

    CAS  Google Scholar 

  • 59.

    Gaylarde, C. C., Rodríguez, C. H., Navarro-Noya, Y. E. & Ortega-Morales, B. O. Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr. Microbiol. 64, 85–92 (2012).

    CAS  Google Scholar 

  • 60.

    Nuhoglu, Y. et al. The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci. Total Environ. 364, 272–283 (2006).

    CAS  Google Scholar 

  • 61.

    Gaylarde, C. et al. Epilithic and endolithic microorganisms and deterioration on stone church facades subject to urban pollution in a sub-tropical climate. Biofouling 33, 113–127 (2017).

    Google Scholar 

  • 62.

    Mansch, R. & Bock, E. Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegradation 9, 47–64 (1998).

    CAS  Google Scholar 

  • 63.

    Viles, H. A. Implications of future climate change for stone deterioration. Geol. Soc. Lond. Spec. Publ. 205, 407–418 (2002).

    Google Scholar 

  • 64.

    Moroni, B. & Pitzurra, L. Biodegradation of atmospheric pollutants by fungi: a crucial point in the corrosion of carbonate building stone. Int. Biodeterior. Biodegrad. 62, 391–396 (2008).

    CAS  Google Scholar 

  • 65.

    Saiz-Jimenez, C. Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buidlings. Int. Biodeterior. Biodegrad. 40, 225–232 (1997).

    CAS  Google Scholar 

  • 66.

    Mitchell, R. & Gu, J.-D. Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int. Biodeterior. Biodegrad. 46, 299–303 (2000).

    CAS  Google Scholar 

  • 67.

    Stefanis, N.-A., Theoulakis, P. & Pilinis, C. Dry deposition effect of marine aerosol to the building stone of the medieval city of Rhodes, Greece. Build. Environ. 44, 260–270 (2009).

    Google Scholar 

  • 68.

    Leysen, L., Roekens, E. & Van Grieken, R. Air-pollution-induced chemical decay of a sandy-limestone Cathedral in Belgium. Sci. Total Environ. 78, 263–287 (1989).

    CAS  Google Scholar 

  • 69.

    Duan, Y. et al. The microbial community characteristics of ancient painted sculptures in Maijishan Grottoes, China. PLoS ONE 12, e0179718 (2017).

    Google Scholar 

  • 70.

    Bakr, A. & El Hafez, M. A. Role assessment of bat excretions in degradation of painted surface from Mohamed Ali’s palace, Suez, Egypt. Egypt. J. Archaeol. Restor. Stud. 3, 47–56 (2012).

    Google Scholar 

  • 71.

    Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 934 (2015).

    Google Scholar 

  • 72.

    Aviam, O., Bar-Nes, G., Zeiri, Y. & Sivan, A. Accelerated biodegradation of cement by sulfur-oxidizing bacteria as a bioassay for evaluating immobilization of low-level radioactive waste. Appl. Environ. Microbiol. 70, 6031–6036 (2004).

    CAS  Google Scholar 

  • 73.

    Vupputuri, S. et al. Isolation of a sulfur-oxidizing Streptomyces sp. from deteriorating bridge structures and its role in concrete deterioration. Int. Biodeterior. Biodegrad. 97, 128–134 (2015).

    CAS  Google Scholar 

  • 74.

    Sand, W. & Bock, E. Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol. J. 9, 129–138 (1991).

    CAS  Google Scholar 

  • 75.

    Salvadori, O. & Municchia, A. C. The role of fungi and lichens in the biodeterioration of stone monuments. Open Conf. Proc. J. 7, 39–54 (2016).

    CAS  Google Scholar 

  • 76.

    Meng, H., Luo, L., Chan, H. W., Katayama, Y. & Gu, J.-D. Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. Int. Biodeterior. Biodegrad. 115, 234–243 (2016).

    CAS  Google Scholar 

  • 77.

    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS  Google Scholar 

  • 78.

    Gu, J.-D. & Katayama, Y. A microbiological challenge in protection of the sandstone Angkor monuments in Cambodia. IIC Newsletter (15 December 2017).

  • 79.

    Gu, J.-D., Ford, T. E., Berke, N. S. & Mitchell, R. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 41, 101–109 (1998).

    Google Scholar 

  • 80.

    Li, X. S. et al. Oxidation of elemental sulfur by Fusarium solani strain THIF01 harboring endobacterium Bradyrhizobium sp. Microb. Ecol. 60, 96–104 (2010).

    CAS  Google Scholar 

  • 81.

    Li, X., Arai, H., Shimoda, I., Kuraishi, H. & Katayama, Y. Enumeration of sulfur-oxidizing microorganisms on deteriorating stone of the Angkor monuments, Cambodia. Microbes Environ. 23, 293–298 (2008).

    Google Scholar 

  • 82.

    Bourcart, J., Noetzlin, J., Pochon, J. & Berthelier, S. Etude des détériorations des pierres des monuments historiques. In Annales de l’Institut Technique de Bâtiment et des Travaux Publics 1–16 (1949).

  • 83.

    Lepidi, A. & Schippa, G. Some aspects of the growth of chemotrophic and heterotrophic microorganisms on calcareous surfaces. In Colloque international sur la deterioration des pierres en oeuvre. 1er. International symposium on the deterioration of building stones 143–148 (Les Imprimerie Reunites de Chambery, 1973).

  • 84.

    Barcellona Vero, L. & Monte Sila, M. Isolation of various sulphur-oxidizing bacteria from stone monuments. In The conservation of stone i. Proceedings of the international symposium (ed. Rossi-Manaresi, R.) 233–244 (Centro per la conservazione delle sculture all’aperto, 1976).

  • 85.

    Tarantino, M. M. S.-G. The metabolic state of microorganisms of the genus Thiobacillus on stone monuments. In The Conservation of stone II: preprints of the contributions to the international symposium 117–138 (Centro per la conservazione delle sculture all’aperto, 1981).

  • 86.

    Milde, K., Sand, W., Wolff, W. & Bock, E. Thiobacilli of the corroded concrete walls of the Hamburg sewer system. Microbiology 129, 1327–1333 (1983).

    Google Scholar 

  • 87.

    Krumbein, W. E. Photolithotropic and chemoorganotrophic activity of bacteria and algae as related to beachrock formation and degradation (gulf of Aqaba, Sinai). Geomicrobiol. J. 1, 139–203 (1979).

    CAS  Google Scholar 

  • 88.

    Suzuki, D., Li, Z., Cui, X., Zhang, C. & Katayama, A. Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. Int. J. Syst. Evol. Microbiol. 64, 3081–3086 (2014).

    CAS  Google Scholar 

  • 89.

    Kleindienst, S. et al. Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J. 8, 2029–2044 (2014).

    CAS  Google Scholar 

  • 90.

    Griffin, P., Indictor, N. & Koestler, R. The biodeterioration of stone: a review of deterioration mechanisms, conservation case histories, and treatment. Int. Biodeterior. Biodegrad. 28, 187–207 (1991).

    Google Scholar 

  • 91.

    Gaylarde, P., Englert, G., Ortega-Morales, O. & Gaylarde, C. Lichen-like colonies of pure Trentepohlia on limestone monuments. Int. Biodeterior. Biodegrad. 58, 119–123 (2006).

    CAS  Google Scholar 

  • 92.

    Isola, D. et al. Extremotolerant rock inhabiting black fungi from Italian monumental sites. Fungal Divers. 76, 75–96 (2016).

    Google Scholar 

  • 93.

    Suihko, M.-L. et al. Characterization of aerobic bacterial and fungal microbiota on surfaces of historic Scottish monuments. Syst. Appl. Microbiol. 30, 494–508 (2007).

    CAS  Google Scholar 

  • 94.

    Morillas, H. et al. Characterization of the main colonizer and biogenic pigments present in the red biofilm from La Galea Fortress sandstone by means of microscopic observations and Raman imaging. Microchem. J. 121, 48–55 (2015).

    CAS  Google Scholar 

  • 95.

    Hu, H. et al. Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int. Biodeterior. Biodegrad. 76, 112–117 (2013).

    CAS  Google Scholar 

  • 96.

    ElBaghdady, K. Z., Tolba, S. T. & Houssien, S. S. Biogenic deterioration of Egyptian limestone monuments: treatment and conservation. J. Cult. Herit. 38, 118–125 (2019).

    Google Scholar 

  • 97.

    Gonzalez-Pimentel, J. L. et al. Yellow coloured mats from lava tubes of La Palma (Canary Islands, Spain) are dominated by metabolically active Actinobacteria. Sci. Rep. 8, 1944 (2018).

    Google Scholar 

  • 98.

    Garty, J. Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 68, 1349–1353 (1990).

    Google Scholar 

  • 99.

    Sterflinger, K. Fungi: their role in deterioration of cultural heritage. Fungal Biol. Rev. 24, 47–55 (2010).

    Google Scholar 

  • 100.

    Ortega-Morales, B. O., Gaylarde, C. C., Englert, G. E. & Gaylarde, P. M. Analysis of salt-containing biofilms on limestone buildings of the Mayan culture at Edzna, Mexico. Geomicrobiol. J. 22, 261–268 (2005).

    CAS  Google Scholar 

  • 101.

    Cappitelli, F. et al. Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl. Environ. Microbiol. 72, 3733–3737 (2006).

    CAS  Google Scholar 

  • 102.

    Vincke, E. et al. Influence of polymer addition on biogenic sulfuric acid attack of concrete. Int. Biodeterior. Biodegrad. 49, 283–292 (2002).

    CAS  Google Scholar 

  • 103.

    De Windt, L. & Devillers, P. Modeling the degradation of Portland cement pastes by biogenic organic acids. Cem. Concr. Res. 40, 1165–1174 (2010).

    Google Scholar 

  • 104.

    Turkington, A. V. & Paradise, T. R. Sandstone weathering: a century of research and innovation. Geomorphology 67, 229–253 (2005).

    Google Scholar 

  • 105.

    Rossi, F. et al. Characteristics and role of the exocellular polysaccharides produced by five cyanobacteria isolated from phototrophic biofilms growing on stone monuments. Biofouling 28, 215–224 (2012).

    CAS  Google Scholar 

  • 106.

    Li, W.-W. & Yu, H.-Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption. Bioresour. Technol. 160, 15–23 (2014).

    CAS  Google Scholar 

  • 107.

    Stone, A. T. Microbial metabolites and the reductive dissolution of manganese oxides: oxalate and pyruvate. Geochim. Cosmochim. Acta 51, 919–925 (1987).

    CAS  Google Scholar 

  • 108.

    Monte, M. Oxalate film formation on marble specimens caused by fungus. J. Cult. Herit. 4, 255–258 (2003).

    Google Scholar 

  • 109.

    Cariati, F., Rampazzi, L., Toniolo, L. & Pozzi, A. Calcium oxalate films on stone surfaces: experimental assessment of the chemical formation. Stud. Conserv. 45, 180–188 (2000).

    CAS  Google Scholar 

  • 110.

    Scherer, G. W. Stress from crystallization of salt. Cem. Concr. Res. 34, 1613–1624 (2004).

    CAS  Google Scholar 

  • 111.

    Saiz-Jimenez, C. & Laiz, L. Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int. Biodeterior. Biodegrad. 46, 319–326 (2000).

    CAS  Google Scholar 

  • 112.

    Favero-Longo, S. E., Borghi, A., Tretiach, M. & Piervittori, R. In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycol. Res. 113, 1216–1227 (2009).

    Google Scholar 

  • 113.

    Lisci, M., Monte, M. & Pacini, E. Lichens and higher plants on stone: a review. Int. Biodeterior. Biodegrad. 51, 1–17 (2003).

    Google Scholar 

  • 114.

    Caneva, G., Danin, A., Ricci, S. & Conti, C. The pitting of Trajan’s column, Rome: an ecological model of its origin. In Conservazione del Patrimonio culturale II, Contributi Centro Linceo Interdisciplinare Beniamino Segre 78–102 (Accademia Nazionale dei Lincei, 1994).

  • 115.

    Danin, A. Pitting of calcareous rocks by organisms under terrestrial conditions. Isr. J. Earth Sci. 41, 201–207 (1992).

    Google Scholar 

  • 116.

    Danin, A. & Caneva, G. Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int. Biodeterior. Biodegrad. 26, 397–417 (1990).

    Google Scholar 

  • 117.

    Lombardozzi, V., Castrignanò, T., D’Antonio, M., Casanova Municchia, A. & Caneva, G. An interactive database for an ecological analysis of stone biopitting. Int. Biodeterior. Biodegrad. 73, 8–15 (2012).

    Google Scholar 

  • 118.

    Gehrmann, C., Krumbein, W. & Petersen, K. Endolithic lichens and the corrosion of carbonate rocks. A study of biopitting. Int. J. Mycol. Lichenol. 5, 37–48 (1992).

    Google Scholar 

  • 119.

    McIlroy de la Rosa, J. P., Warke, P. A. & Smith, B. J. Microscale biopitting by the endolithic lichen Verrucaria baldensis and its proposed role in mesoscale solution basin development on limestone. Earth Surf. Process. Landf. 37, 374–384 (2012).

    Google Scholar 

  • 120.

    Pomar, F., Gómez-Pujol, L., Fornós, J. J., Del Valle, L. & Nogales, B. Limestone biopitting in coastal settings: A spatial, morphometric, SEM and molecular microbiology sequencing study in the Mallorca rocky coast (Balearic Islands, Western Mediterranean). Geomorphology 276, 104–115 (2017).

    Google Scholar 

  • 121.

    Caneva, G. Ecological approach to the genesis of calcium oxalate patinas on stone monuments. Aerobiologia 9, 149–156 (1993).

    Google Scholar 

  • 122.

    Bruno, L. & Valle, V. Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int. Biodeterior. Biodegrad. 123, 286–295 (2017).

    Google Scholar 

  • 123.

    Danin, A. Patterns of biogenic weathering as indicators of palaeoclimates in Israel. Proc. R. Soc. Edinb. B 89, 243–253 (1986).

    Google Scholar 

  • 124.

    de Ferri, L., Lottici, P. P., Lorenzi, A., Montenero, A. & Salvioli-Mariani, E. Study of silica nanoparticles – polysiloxane hydrophobic treatments for stone-based monument protection. J. Cult. Herit. 12, 356–363 (2011).

    Google Scholar 

  • 125.

    Son, S. et al. Organic−inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS Appl. Mater. Inter. 1, 393–401 (2009).

    CAS  Google Scholar 

  • 126.

    Erkal, A., D’Ayala, D. & Sequeira, L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Build. Environ. 57, 336–348 (2012).

    Google Scholar 

  • 127.

    Traversetti, L., Bartoli, F. & Caneva, G. Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. Int. Biodeterior. Biodegrad. 134, 31–38 (2018).

    Google Scholar 

  • 128.

    Ortega-Morales, O., Guezennec, J., Hernández-Duque, G., Gaylarde, C. C. & Gaylarde, P. M. Phototrophic biofilms on ancient Mayan buildings in Yucatan, Mexico. Curr. Microbiol. 40, 81–85 (2000).

    CAS  Google Scholar 

  • 129.

    Li, Q., Zhang, B., He, Z. & Yang, X. Distribution and diversity of bacteria and fungi colonization in stone monuments analyzed by high-throughput sequencing. PLoS ONE 11, e0163287 (2016).

    Google Scholar 

  • 130.

    Wu, F., Wang, W., Feng, H. & Gu, J.-D. Realization of biodeterioration to cultural heritage protection in China. Int. Biodeterior. Biodegrad. 117, 128–130 (2017).

    CAS  Google Scholar 

  • 131.

    Wang, W. et al. Seasonal dynamics of airborne fungi in different caves of the Mogao Grottoes, Dunhuang, China. Int. Biodeterior. Biodegrad. 64, 461–466 (2010).

    Google Scholar 

  • 132.

    Zamarreño, D. V., Inkpen, R. & May, E. Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl. Environ. Microbiol. 75, 5981–5990 (2009).

    Google Scholar 

  • 133.

    Jroundi, F. et al. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat. Commun. 8, 279 (2017).

    Google Scholar 

  • 134.

    Ascaso, C. et al. In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int. Biodeterior. Biodegrad. 49, 1–12 (2002).

    Google Scholar 

  • 135.

    Koestler, R. J., Parreira, E., Santoro, E. D. & Noble, P. Visual effects of selected biocides on easel painting materials. Stud. Conserv. 38, 265–273 (1993).

    Google Scholar 

  • 136.

    Fidanza, M. R. & Caneva, G. Natural biocides for the conservation of stone cultural heritage: a review. J. Cult. Herit. 38, 271–286 (2019).

    Google Scholar 

  • 137.

    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Production of green biocides for cultural heritage. Novel biotechnological solutions. Int. J. Conserv. Sci. 6, 519–530 (2015).

    CAS  Google Scholar 

  • 138.

    Silva, M., Rosado, T., Teixeira, D., Candeias, A. & Caldeira, A. T. Green mitigation strategy for cultural heritage: bacterial potential for biocide production. Environ. Sci. Pollut. Res. 24, 4871–4881 (2017).

    CAS  Google Scholar 

  • 139.

    Marin, E., Vaccaro, C. & Leis, M. Biotechnology applied to historic stoneworks conservation: testing the potential harmfulness of two biological biocides. Int. J. Conserv. Sci. 7, 227–238 (2016).

    Google Scholar 

  • 140.

    Caneva, G., Fidanza, M. R., Tonon, C. & Favero-Longo, S. E. Biodeterioration patterns and their interpretation for potential applications to stone conservation: a hypothesis from allelopathic inhibitory effects of lichens on the Caestia Pyramid (Rome). Sustainability 12, 1132 (2020).

    CAS  Google Scholar 

  • 141.

    Alfano, G. et al. The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int. Biodeterior. Biodegrad. 65, 1004–1011 (2011).

    CAS  Google Scholar 

  • 142.

    Soffritti, I. et al. The potential use of microorganisms as restorative agents: an update. Sustainability 11, 3853 (2019).

    CAS  Google Scholar 

  • 143.

    Scherer, G. W., Flatt, R. & Wheeler, G. Materials science research for the conservation of sculpture and monuments. MRS Bull. 26, 44–50 (2001).

    CAS  Google Scholar 

  • 144.

    Gu, J.-D. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int. Biodeterior. Biodegrad. 52, 69–91 (2003).

    CAS  Google Scholar 

  • 145.

    Charola, A. E., McNamara, C. & Koestler, R. J. (eds) Biocolonization of Stone: Control and Preventive Methods: Proceedings from the MCI Workshop Series Smithsonian Contributions to Museum Conservation no. 2 (Smithsonian Institution Scholarly Press, 2011).

  • 146.

    Yang, F. et al. Conservation of weathered historic sandstone with biomimetic apatite. Chin. Sci. Bull. 57, 2171–2176 (2012).

    CAS  Google Scholar 

  • 147.

    Gherardi, F., Roveri, M., Goidanich, S. & Toniolo, L. Photocatalytic nanocomposites for the protection of European architectural heritage. Materials 11, 65 (2018).

    Google Scholar 

  • 148.

    Sierra-Fernandez, A., Gomez-Villalba, L., Rabanal, M. & Fort, R. New nanomaterials for applications in conservation and restoration of stony materials: a review. Mater. Construcc. 67, e107 (2017).

    Google Scholar 

  • 149.

    Grossi, C. M., Bonazza, A., Brimblecombe, P., Harris, I. & Sabbioni, C. Predicting twenty-first century recession of architectural limestone in European cities. Environ. Geol. 56, 455–461 (2008).

    CAS  Google Scholar 

  • 150.

    de la Rosa, J. P. M., Warke, P. A. & Smith, B. J. Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog. Phys. Geog. 37, 325–351 (2013).

    Google Scholar 

  • 151.

    Gadd, G. M. & Dyer, T. D. Bioprotection of the built environment and cultural heritage. Microb. Biotechnol. 10, 1152–1156 (2017).

    Google Scholar 

  • 152.

    Pinna, D. Biofilms and lichens on stone monuments: do they damage or protect? Front. Microbiol. 5, 133 (2014).

    Google Scholar 

  • 153.

    Gadd, G. M. et al. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 28, 36–55 (2014).

    Google Scholar 

  • 154.

    Bosch-Roig, P. & Ranalli, G. The safety of biocleaning technologies for cultural heritage. Front. Microbiol. 5, 155 (2014).

    Google Scholar 

  • 155.

    Zhang, G. et al. Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. Int. Biodeterior. Biodegrad. 143, 104723 (2019).

    CAS  Google Scholar 

  • 156.

    Zhang, X., Ge, Q., Zhu, Z., Deng, Y. & Gu, J.-D. Microbiological community of the Royal Palace in Angkor Thom and Beng Mealea of Cambodia by Illumina sequencing based on 16S rRNA gene. Int. Biodeterior. Biodegrad. 134, 127–135 (2018).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Gene expression during bacterivorous growth of a widespread marine heterotrophic flagellate

    Local management and landscape structure determine the assemblage patterns of spiders in vegetable fields