in

Mitochondrial genomics reveals the evolutionary history of the porpoises (Phocoenidae) across the speciation continuum

  • 1.

    Steeman, M. E. et al. Radiation of extant cetaceans driven by restructuring of the oceans. Syst. Biol. 58, 573–585 (2009).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Tolley, K. A. & Rosel, P. E. Population structure and historical demography of eastern North Atlantic harbour porpoises inferred through mtDNA sequences. Mar. Ecol. Prog. Ser. 327, 297–308 (2006).

    ADS  CAS  Google Scholar 

  • 3.

    Banguera-Hinestroza, E., Bjørge, A., Reid, R. J., Jepson, P. & Hoelzel, A. R. The influence of glacial epochs and habitat dependence on the diversity and phylogeography of a coastal dolphin species: Lagenorhynchus albirostris. Conserv. Genet. 11, 1823–1836 (2010).

    Google Scholar 

  • 4.

    Taguchi, M., Chivers, S. J., Rosel, P. E., Matsuishi, T. & Abe, S. Mitochondrial DNA phylogeography of the harbour porpoise Phocoena phocoena in the North Pacific. Mar. Biol. 157, 1489–1498 (2010).

    CAS  Google Scholar 

  • 5.

    Amaral, A. R. et al. Influences of past climatic changes on historical population structure and demography of a cosmopolitan marine predator, the common dolphin (genus Delphinus). Mol. Ecol. 21, 4854–4871 (2012).

    PubMed  Google Scholar 

  • 6.

    Moura, A. E. et al. Recent diversification of a Marine Genus (Tursiops spp.) tracks habitat preference and environmental change. Syst. Biol. 62, 865–877 (2013).

    PubMed  Google Scholar 

  • 7.

    Whitehead, H. Cultural selection and genetic diversity in matrilineal whales. Science 282, 1708–1711 (1998).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Fontaine, M. C. et al. Postglacial climate changes and rise of three ecotypes of harbour porpoises, Phocoena phocoena, in western Palearctic waters. Mol. Ecol. 23, 3306–3321 (2014).

    CAS  PubMed  Google Scholar 

  • 9.

    Louis, M. et al. Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator. Proc. Biol. Sci. 281, 20141558–20141558 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Foote, A. D. et al. Genome-culture coevolution promotes rapid divergence of killer whale ecotypes. Nat. Commun. 7, 11693 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Hare, M. P., Cipriano, F. & Palumbi, S. R. Genetic evidence on the demography of speciation in allopatric dolphin species. Evolution 56, 804–816 (2002).

    PubMed  Google Scholar 

  • 12.

    Pastene, L. A. et al. Radiation and speciation of pelagic organisms during periods of global warming: The case of the common minke whale, Balaenoptera acutorostrata. Mol. Ecol. 16, 1481–1495 (2007).

    CAS  PubMed  Google Scholar 

  • 13.

    Barnes, L. G. Evolution, taxonomy and antitropical distributions of the porpoises (Phocoenidae, Mammalia). Mar. Mammal Sci. 1, 149–165 (1985).

    Google Scholar 

  • 14.

    Burridge, C. P. Antitropicality of Pacific fishes: Molecular insights. Environ. Biol. Fishes 65, 151–164 (2002).

  • 15.

    Banguera-Hinestroza, E., Hayano, A., Crespo, E. & Hoelzel, A. R. Delphinid systematics and biogeography with a focus on the current genus Lagenorhynchus: Multiple pathways for antitropical and trans-oceanic radiation. Mol. Phylogenet. Evol. 80, 217–230 (2014).

    PubMed  Google Scholar 

  • 16.

    Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 17.

    McGowen, M. R., Spaulding, M. & Gatesy, J. Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol. Phylogenet. Evol. 53, 891–906 (2009).

    CAS  PubMed  Google Scholar 

  • 18.

    Gaskin, D. E. The ecology of whales and dolphins (Heinemann, London, 1982).

    Google Scholar 

  • 19.

    Zhou, X. et al. Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater. Nat. Commun. 9, 1276 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Teilmann, J. & Sveegaard, S. Porpoises the World over: Diversity in behavior and ecology. in Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B). Vol. 54, 449–464 (Springer International Publishing, New York, 2019).

  • 21.

    Ridgway, S. H. & Johnston, D. G. Blood oxygen and ecology of porpoises of three genera. Science 151, 456–458 (1966).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Morell, V. World’s most endangered marine mammal down to 30. Science 355, 558–559 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 23.

    Amante, C. & Eatkins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC. https://doi.org/10.7289/V5C8276M.

  • 24.

    Berta, A., Sumich, J. L. & Kovacs, K. M. Chapter 6 – Evolution and geography. in Marine Mammals: Evolutionary Biology 131–166 (Elsevier, Amsterdam, 2015). https://doi.org/10.1016/B978-0-12-397002-2.00006-5.

  • 25.

    Chen, M. et al. Genetic footprint of population fragmentation and contemporary collapse in a freshwater cetacean. Sci. Rep. 7, 14449 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Hayano, A., Amano, M. & Miyazaki, N. Phylogeography and population structure of the Dall’s porpoise, Phocoenoides dalli, in Japanese waters revealed by mitochondrial DNA. Genes Genet. Syst. 78, 81–91 (2003).

    CAS  PubMed  Google Scholar 

  • 27.

    Rosa, S. et al. Population structure of nuclear and mitochondrial DNA variation among South American Burmeister’s porpoises (Phocoena spinipinnis). Conserv. Genet. 6, 431–443 (2005).

    CAS  Google Scholar 

  • 28.

    Méndez-Fernandez, P. et al. Ecological niche segregation among five toothed whale species off the NW Iberian Peninsula using ecological tracers as multi-approach. Mar. Biol. 160, 2825–2840 (2013).

    Google Scholar 

  • 29.

    Galatius, A., Kinze, C. C. & Teilmann, J. Population structure of harbour porpoises in the Baltic region: Evidence of separation based on geometric morphometric comparisons. J. Mar. Biol. Ass. 92, 1669–1676 (2012).

    Google Scholar 

  • 30.

    Fontaine, M. C. Harbour porpoises, Phocoena phocoena, in the Mediterranean Sea and adjacent regions: Biogeographic relicts of the Last Glacial Period. Adv. Mar. Biol. 75, 333–358 (2016).

    CAS  PubMed  Google Scholar 

  • 31.

    Tezanos-Pinto, G. et al. A worldwide perspective on the population structure and genetic diversity of bottlenose dolphins (Tursiops truncatus) in New Zealand. J. Hered. 100, 11–24 (2009).

    CAS  PubMed  Google Scholar 

  • 32.

    Thomas, L. et al. Last call: Passive acoustic monitoring shows continued rapid decline of critically endangered vaquita. J. Acoust. Society Am. 142, EL512–EL517 (2017).

    Google Scholar 

  • 33.

    Jaramillo Legorreta, A. M. et al. Decline towards extinction of Mexico’s vaquita porpoise (Phocoena sinus). R. Soc. Open Sci. 6, 190598 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Wang, J. Y. & Reeves, R. R. Neophocaena phocaenoides. The IUCN Red List of Threatened Species. e.T198920A50386795. https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T198920A50386795.en. Downloaded on 04 April 2019 (2017).

  • 35.

    Wang, D., Turvey, S. T., Zhao, X. & Mei, Z. Neophocaena asiaeorientalis ssp. asiaeorientalis. The IUCN Red List of Threatened Species. e.T43205774A45893487. https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T43205774A45893487.en. Downloaded on 04 April 2019. (2013).

  • 36.

    Birkun, A. A., Jr & Frantzis, A. Phocoena phocoena ssp. relicta. The IUCN Red List of Threatened Species. e.T17030A6737111. https://doi.org/10.2305/IUCN.UK.2008.RLTS.T17030A6737111.en. Downloaded on 04 April 2019 (2008).

  • 37.

    Read, F. L., Santos, M. B. & González, A. F. Understanding Harbour Porpoise (Phocoena phocoena) and Fishery Interactions in the North-West Iberian Peninsula. (Final report to ASCOBANS, 2012).

  • 38.

    Dufresnes, C. et al. Conservation phylogeography: Does historical diversity contribute to regional vulnerability in European tree frogs (Hyla arborea)?. Mol. Ecol. 22, 5669–5684 (2013).

    PubMed  Google Scholar 

  • 39.

    Malaney, J. L. & Cook, J. A. Using biogeographical history to inform conservation: The case of Preble’s meadow jumping mouse. Mol. Ecol. 22, 6000–6017 (2013).

    PubMed  Google Scholar 

  • 40.

    Moritz, C. C. & Potter, S. The importance of an evolutionary perspective in conservation policy planning. Mol. Ecol. 22, 5969–5971 (2013).

    PubMed  Google Scholar 

  • 41.

    Fajardo-Mellor, L. et al. The phylogenetic relationships and biogeography of true porpoises (Mammalia: Phocoenidae) based on morphological data. Mar. Mammal Sci. 22, 910–932 (2006).

    Google Scholar 

  • 42.

    Rosel, P. E., Haygood, M. G. & Perrin, W. F. Phylogenetic relationships among the true porpoises (Cetacea: Phocoenidae). Mol. Phylogenet. Evol. 4, 463–474 (1995).

    CAS  PubMed  Google Scholar 

  • 43.

    Torroni, A., Achilli, A., Macaulay, V., Richards, M. & Bandelt, H.-J. Harvesting the fruit of the human mtDNA tree. Trends Genet. 22, 339–345 (2006).

    CAS  PubMed  Google Scholar 

  • 44.

    Viricel, A. & Rosel, P. E. Evaluating the utility of cox1 for cetacean species identification. Mar. Mammal Sci. 28, 37–62 (2011).

    Google Scholar 

  • 45.

    Andrews, S. FastQC: A quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

  • 46.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 47.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 48.

    Arnason, U., Gullberg, A. & Janke, A. Mitogenomic analyses provide new insights into cetacean origin and evolution. Gene 333, 27–34 (2004).

    CAS  PubMed  Google Scholar 

  • 49.

    Hahn, C., Bachmann, L. & Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—A baiting and iterative mapping approach. Nucleic Acids Res. 41, e129–e129 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Morin, P. A. et al. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species. Genome Res. 20, 908–916 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 52.

    Clayton, D. A. Transcription and replication of mitochondrial DNA. Hum. Reprod. 15(Suppl 2), 11–17 (2000).

    PubMed  Google Scholar 

  • 53.

    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    CAS  Google Scholar 

  • 54.

    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 55.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9, 772–772 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 56.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6. (2014). https://tree.bio.ed.ac.uk/software/tracer/. Accessed 26 Feb 2017.

  • 57.

    Yu, G., Lam, T.T.-Y., Zhu, H. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using Ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537–e1003546 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 59.

    Nabholz, B., Glemin, S. & Galtier, N. Strong variations of mitochondrial mutation rate across mammals—The longevity hypothesis. Mol. Biol. Evol. 25, 120–130 (2007).

    PubMed  Google Scholar 

  • 60.

    Fontaine, M. C. et al. Genetic and historic evidence for climate-driven population fragmentation in a top cetacean predator: The harbour porpoises in European water. Proc. Biol. Sci. 277, 2829–2837 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Rambaut, A. & Drummond, A. J. FigTree version 1.4.3. (tree.bio.ed.ac.uk/software/figtree, 2012).

  • 62.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).

    CAS  PubMed  Google Scholar 

  • 63.

    Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282 (1968).

    Google Scholar 

  • 64.

    McDonald, J. H. & Kreitman, M. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351, 652–654 (1991).

    ADS  CAS  PubMed  Google Scholar 

  • 65.

    Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics. https://cran.r-project.org/web/packages/RVAideMemoire/index.html (2019).

  • 66.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 67.

    Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983). https://doi.org/10.1017/CBO9780511623486.

    Google Scholar 

  • 68.

    Hughes, A. L. Near neutrality: Leading edge of the neutral theory of molecular evolution. Ann. N. Y. Acad. Sci. 1133, 162–179 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 69.

    Phifer-Rixey, M. et al. Adaptive evolution and effective population size in wild house mice. Mol. Biol. Evol. 29, 2949–2955 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 70.

    Eyre-Walker, A. Changing effective population size and the McDonald–Kreitman test. Genetics 162, 2017–2024 (2002).

    PubMed  PubMed Central  Google Scholar 

  • 71.

    Parsch, J., Zhang, Z. & Baines, J. F. The influence of demography and weak selection on the McDonald-Kreitman test: An empirical study in Drosophila. Mol. Biol. Evol. 26, 691–698 (2009).

    CAS  PubMed  Google Scholar 

  • 72.

    Romiguier, J. et al. Fast and robust characterization of time-heterogeneous sequence evolutionary processes using substitution mapping. PLoS ONE 7, e33852 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 73.

    Dutheil, J. & Boussau, B. Non-homogeneous models of sequence evolution in the Bio++ suite of libraries and programs. BMC Evol. Biol. 8, 255 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 74.

    Dutheil, J. Y. et al. Efficient selection of branch-specific models of sequence evolution. Mol. Biol. Evol. 29, 1861–1874 (2012).

    CAS  PubMed  Google Scholar 

  • 75.

    R Core Team. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/ (2018).

  • 76.

    Figuet, E., Romiguier, J., Dutheil, J. Y. & Galtier, N. Mitochondrial DNA as a tool for reconstructing past life-history traits in mammals. J. Evol. Biol. 27, 899–910 (2014).

    CAS  PubMed  Google Scholar 

  • 77.

    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 78.

    Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 133, 693–709 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 79.

    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).

    Google Scholar 

  • 80.

    Schneider, S. & Excoffier, L. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005).

    CAS  PubMed  Google Scholar 

  • 82.

    Kingman, J. F. C. The coalescent. Stochastic Process. Appl. 13, 235–248 (1982).

    MathSciNet  MATH  Google Scholar 

  • 83.

    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    MathSciNet  MATH  Google Scholar 

  • 84.

    Moura, A. E. et al. Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers. Mol. Phylogenet. Evol. 146, 106756 (2020).

    PubMed  Google Scholar 

  • 85.

    Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. Diversity versus disparity and the radiation of modern cetaceans. Proc. Biol. Sci. 277, 3097–3104 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 86.

    McGowen, M. R. et al. Phylogenomic resolution of the cetacean tree of life using target sequence capture. Syst. Biol. 31, 2553 (2019).

    Google Scholar 

  • 87.

    Ho, S. Y. W., Saarma, U., Barnett, R., Haile, J. & Shapiro, B. The effect of inappropriate calibration: Three case studies in molecular ecology. PLoS ONE 3, e1615 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 88.

    Zheng, Y. & Wiens, J. J. Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol. Phylogenet. Evol. 85, 41–49 (2015).

    PubMed  Google Scholar 

  • 89.

    Lindberg, D. R. Marine biotic interchange between the northern and southern hemispheres. Paleobiology 17, 308–324 (1991).

    Google Scholar 

  • 90.

    Perrin, W. F. Coloration. in Encyclopedia of Marine Mammals (eds. Würsig, B., Perrin, W. & Thewissen, J. G. M.) 243–249 (Elsevier, 2009). https://doi.org/10.1016/B978-0-12-373553-9.00061-4.

  • 91.

    Koopman, H. N., Pabst, D. A., McLellan, W. A., Dillaman, R. M. & Read, A. J. Changes in blubber distribution and morphology associated with starvation in the harbor porpoise (Phocoena phocoena): Evidence for regional differences in blubber structure and function. Physiol. Biochem. Zool. 75, 498–512 (2002).

    CAS  PubMed  Google Scholar 

  • 92.

    Hoekendijk, J. P. A., Spitz, J., Read, A. J., Leopold, M. F. & Fontaine, M. C. Resilience of harbor porpoises to anthropogenic disturbance: Must they really feed continuously? Mar. Mammal Sci. 34, 258–264 (2018).

    Google Scholar 

  • 93.

    Escorza-Treviño, S. & Dizon, A. E. Phylogeography, intraspecific structure and sex-biased dispersal of Dall’s porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses. Mol. Ecol. 9, 1049–1060 (2000).

    PubMed  Google Scholar 

  • 94.

    Wang, J. Y., Frasier, T. R., Yang, S. C. & White, B. N. Detecting recent speciation events: The case of the finless porpoise (genus Neophocaena). Heredity (Edinb) 101, 145–155 (2008).

    CAS  Google Scholar 

  • 95.

    Lin, W. et al. Phylogeography of the finless porpoise (genus Neophocaena): Testing the stepwise divergence hypothesis in the northwestern Pacific. Sci. Rep. 4, 6572 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 96.

    Rosel, P. E., Dizon, A. E. & Haygood, M. G. Variability of the mitochondrial control region in populations of the harbour porpoise, Phocoena, on interoceanic and regional scales. Can. J. Fish. Aquat. Sci. 52, 1210–1219 (1995).

    CAS  Google Scholar 

  • 97.

    Harris, S. A. Thermal history of the Arctic Ocean environs adjacent to North America during the last 3.5 Ma and a possible mechanism for the cause of the cold events (major glaciations and permafrost events). Progress Phys. Geogr. Earth Environ. 29, 218–237 (2005).

    Google Scholar 

  • 98.

    Chivers, S. J., Dizon, A. E. & Gearin, P. J. Small-scale population structure of eastern North Pacific harbour porpoises (Phocoena phocoena) indicated by molecular genetic analyses. J. Cetacean Res. Manag. 4, 111–122 (2002).

    Google Scholar 

  • 99.

    Pimper, L. E., Goodall, R. N. P. & Remis, M. I. First mitochondrial DNA analysis of the spectacled porpoise (Phocoena dioptrica) from Tierra del Fuego, Argentina. Mamm. Biol. Zeitschrift für Säugetierkunde 77, 459–462 (2012).

    Google Scholar 

  • 100.

    Lundmark, C. Science sings the blues: Other words for Nothin’ left to lose. Bioscience 57, 208–208 (2007).

    Google Scholar 

  • 101.

    Ehlers, J. R. & Gibbard, P. Quaternary glaciation. in Encyclopedia of Snow, Ice and Glaciers 873–882 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-90-481-2642-2_423

  • 102.

    Norris, K. S. & McFarland, W. N. A new harbor porpoise of the genus Phocoena from the Gulf of California. J. Mammal. 39, 22 (1958).

    Google Scholar 

  • 103.

    Rosel, P. E. & Rojas-Bracho, L. Mitochondrial DNA variation in the critically endangered Vaquita Phocoena Sinus Norris and Macfarland, 1958. Mar. Mammal Sci. 15, 990–1003 (1999).

    Google Scholar 

  • 104.

    Allendorf, F. W., Luikart, G. H. & Aitken, S. N. Conservation and the Genetics of Populations (Wiley, New York, 2012).

    Google Scholar 

  • 105.

    Moritz, C. Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS  PubMed  Google Scholar 

  • 106.

    Nabholz, B., Mauffrey, J.-F., Bazin, E., Galtier, N. & Glemin, S. Determination of mitochondrial genetic diversity in mammals. Genetics 178, 351–361 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 107.

    Bazin, E., Glemin, S. & Galtier, N. Population size does not influence mitochondrial genetic diversity in animals. Science 312, 570–572 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 108.

    Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).

    PubMed  Google Scholar 

  • 109.

    Fontaine, M. C. et al. Mosquito genomics. Extensive introgression in a malaria vector species complex revealed by phylogenomics. Science 347, 1258524 (2015).

    PubMed  Google Scholar 

  • 110.

    Heliconius Genome Consortium. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).

    ADS  Google Scholar 

  • 111.

    Miles, A. et al. Genetic diversity of the African malaria vector Anopheles gambiae. Nature 552, 96–100 (2017).

    ADS  Google Scholar 


  • Source: Ecology - nature.com

    Did our early ancestors boil their food in hot springs?

    MIT Integrative Microbiology Initiative will stimulate environmental microbiology research