in

Mutual mate choice and its benefits for both sexes

  • 1.

    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity (Edinb). 2, 349–368 (1948).

    CAS  Article  Google Scholar 

  • 2.

    Trivers, R. L. Parental investment and sexual selection. In Sexual Selection and the Descent of Man (Ed. B. Campbell.) 136–179 (Aldinc, Chicago, 1972).

  • 3.

    Parker, G. A. & Pizzari, T. Sexual selection: the logical imperative. In Current Perspectives on Sexual Selection: What’s Left After Darwin? (Ed. T. Horquet.) 119–163 (Springer, Dordrecht, 2015).

  • 4.

    Clutton-Brock, T. Reproductive competition and sexual selection. Philos. Trans. R. Soc. Biol. B Sci. 372, 20160310 (2017).

    Article  Google Scholar 

  • 5.

    Kokko, H., Brooks, R., Jennions, M. D. & Morley, J. The evolution of mate choice and mating biases. Proc. R. Soc. London. Ser. B Biol. Sci. 270, 653–664 (2003).

    Article  Google Scholar 

  • 6.

    Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • 7.

    Fromhage, L. & Jennions, M. D. Coevolution of parental investment and sexually selected traits drives sex-role divergence. Nat. Commun. 7, 12517 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. The evolution of mutual mate choice under direct benefits. Am. Nat. 188, 521–538 (2016).

    Article  Google Scholar 

  • 9.

    Byrne, P. G. & Rice, W. R. Evidence for adaptive male mate choice in the fruit fly Drosophila melanogaster. Proc. R. Soc. B Biol. Sci. 273, 917–922 (2006).

    Article  Google Scholar 

  • 10.

    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32, 964–976 (2017).

    Article  PubMed  Google Scholar 

  • 11.

    Gwynne, D. T. Sexual competition among females: What causes courtship-role reversal?. Trends Ecol. Evol. 6, 118–121 (1991).

    CAS  Article  PubMed  Google Scholar 

  • 12.

    Edward, D. A. & Chapman, T. The evolution and significance of male mate choice. Trends Ecol. Evol. 26, 647–654 (2011).

    Article  PubMed  Google Scholar 

  • 13.

    Vallejos, J. G., Grafe, T. U., Sah, H. H. A. & Wells, K. D. Calling behavior of males and females of a Bornean frog with male parental care and possible sex-role reversal. Behav. Ecol. Sociobiol. 71, 95 (2017).

    Article  Google Scholar 

  • 14.

    Amundsen, T. & Forsgren, E. Male mate choice selects for female coloration in a fish. Proc. Natl. Acad. Sci. 98, 13155–13160 (2001).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 15.

    Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 76, 305–339 (2001).

    CAS  Article  PubMed  Google Scholar 

  • 16.

    Servedio, M. R. & Lande, R. Population genetic models of male and mutual mate choice. Evolution (N. Y.). 60, 674–685 (2006).

    Google Scholar 

  • 17.

    Lailvaux, S. P. & Irschick, D. J. A functional perspective on sexual selection: Insights and future prospects. Anim. Behav. 72, 263–273 (2006).

    Article  Google Scholar 

  • 18.

    Kirkpatrick, M., Rand, A. S. & Ryan, M. J. Mate choice rules in animals. Anim. Behav. 71, 1215–1225 (2006).

    Article  Google Scholar 

  • 19.

    Holveck, M.-J. & Riebel, K. Low-quality females prefer low-quality males when choosing a mate. Proc. R. Soc. B Biol. Sci. 277, 153–160 (2009).

    Article  Google Scholar 

  • 20.

    Aquiloni, L. & Gherardi, F. Mutual mate choice in crayfish: Large body size is selected by both sexes, virginity by males only. J. Zool. 274, 171–179 (2008).

    Article  Google Scholar 

  • 21.

    Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).

    Article  Google Scholar 

  • 22.

    Monroe, M. J., South, S. H. & Alonzo, S. H. The evolution of fecundity is associated with female body size but not female-biased sexual size dimorphism among frogs. J. Evol. Biol. 28, 1793–1803 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 23.

    Pincheira-Donoso, D. & Hunt, J. Fecundity selection theory: Concepts and evidence. Biol. Rev. 92, 341–356 (2017).

    Article  PubMed  Google Scholar 

  • 24.

    Dosen, L. D. & Montgomerie, R. Female size influences mate preferences of male guppies. Ethology 110, 245–255 (2004).

    Article  Google Scholar 

  • 25.

    Kokko, H., Jennions, M. D. & Brooks, R. Unifying and testing models of sexual selection. Annu. Rev. Ecol. Evol. Syst. 37, 43–66 (2006).

    Article  Google Scholar 

  • 26.

    Booksmythe, I., Mautz, B., Davis, J., Nakagawa, S. & Jennions, M. D. Facultative adjustment of the offspring sex ratio and male attractiveness: A systematic review and meta-analysis. Biol. Rev. 92, 108–134 (2017).

    Article  PubMed  Google Scholar 

  • 27.

    Hamilton, W. D. & Zuk, M. Heritable true fitness and bright birds: A role for parasites?. Science 218, 384–387 (1982).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 28.

    Dunn, P. O., Garvin, J. C., Whittingham, L. A., Freeman-Gallant, C. R. & Hasselquist, D. Carotenoid and melanin-based ornaments signal similar aspects of male quality in two populations of the common yellowthroat. Funct. Ecol. 24, 149–158 (2010).

    Article  Google Scholar 

  • 29.

    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science (80-). 337, 860–864 (2012).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Dhole, S., Stern, C. A. & Servedio, M. R. Direct detection of male quality can facilitate the evolution of female choosiness and indicators of good genes: Evolution across a continuum of indicator mechanisms. Evolution (N.Y.). 72, 770–784 (2018).

    Google Scholar 

  • 31.

    Roberts, M. L., Buchanan, K. L. & Evans, M. R. Testing the immunocompetence handicap hypothesis: A review of the evidence. Anim. Behav. 68, 227–239 (2004).

    Article  Google Scholar 

  • 32.

    Joye, P. & Kawecki, T. J. Sexual selection favours good or bad genes for pathogen resistance depending on males’ pathogen exposure. Proc. R. Soc. B 286, 20190226 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Able, D. J. The contagion indicator hypothesis for parasite-mediated sexual selection. Proc. Natl. Acad. Sci. 93, 2229–2233 (1996).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 34.

    Penn, D. & Potts, W. K. Chemical signals and parasite-mediated sexual selection. Trends Ecol. Evol. 13, 391–396 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 35.

    Arakawa, H., Cruz, S. & Deak, T. From models to mechanisms: Odorant communication as a key determinant of social behavior in rodents during illness-associated states. Neurosci. Biobehav. Rev. 35, 1916–1928 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • 36.

    Beltran-Bech, S. & Richard, F.-J. Impact of infection on mate choice. Anim. Behav. 90, 159–170 (2014).

    Article  Google Scholar 

  • 37.

    Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle, Tenebrio molitor. Funct. Ecol. 17, 534–540 (2003).

    Article  Google Scholar 

  • 38.

    Wyatt, T. D. Pheromones. Curr. Biol. 27, R739–R743 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 39.

    Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Koh, T. H., Seah, W. K., Yap, L.-M.Y.L. & Li, D. Pheromone-based female mate choice and its effect on reproductive investment in a spitting spider. Behav. Ecol. Sociobiol. 63, 923–930 (2009).

    Article  Google Scholar 

  • 41.

    Peso, M., Elgar, M. A. & Barron, A. B. Pheromonal control: Reconciling physiological mechanism with signalling theory. Biol. Rev. 90, 542–559 (2015).

    Article  PubMed  Google Scholar 

  • 42.

    Roberts, S. C., Gosling, L. M., Thornton, E. A. & McClung, J. Scent-marking by male mice under the risk of predation. Behav. Ecol. 12, 698–705 (2001).

    Article  Google Scholar 

  • 43.

    Foster, S. P. & Anderson, K. G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth, Heliothis virescens. J. Exp. Biol. 218, 1252–1258 (2015).

    Article  PubMed  Google Scholar 

  • 44.

    Happ, G. M. Multiple sex pheromones of the mealworm beetle, Tenebrio molitor L.. Nature 222, 180 (1969).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Stökl, J. & Steiger, S. Evolutionary origin of insect pheromones. Curr. Opin. Insect Sci. 24, 36–42 (2017).

    Article  PubMed  Google Scholar 

  • 46.

    Roitberg, B. D. Chemical communication. in Insect Behavior: From Mechanisms to Ecological and Evolutionary Consequences (eds. Córdoba-Aguilar et al.) vol. I 416 (Oxford University Press, 2018).

  • 47.

    Hurd, H. & Parry, G. Metacestode-induced depression of the production of, and response to, sex pheromone in the intermediate host, Tenebrio molitor. J. Invertebr. Pathol. 58, 82–87 (1991).

    CAS  Article  PubMed  Google Scholar 

  • 48.

    McConnell, M. W. & Judge, K. A. Body size and lifespan are condition dependent in the mealworm beetle, Tenebrio molitor, but not sexually selected traits. Behav. Ecol. Sociobiol. 72, 32 (2018).

    Article  Google Scholar 

  • 49.

    Bryning, G. P., Chambers, J. & Wakefield, M. E. Identification of a sex pheromone from male yellow mealworm beetles, Tenebrio molitor. J. Chem. Ecol. 31, 2721–2730 (2005).

    CAS  Article  PubMed  Google Scholar 

  • 50.

    Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: Immune-challenged males produce more attractive pheromones. Funct. Ecol. 26, 20–28 (2012).

    Article  Google Scholar 

  • 51.

    Worden, B. D., Parker, P. G. & Pappas, P. W. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).

    CAS  Article  PubMed  Google Scholar 

  • 52.

    Worden, B. D. & Parker, P. G. Females prefer noninfected males as mates in the grain beetle Tenebrio molitor: Evidence in pre-and postcopulatory behaviours. Anim. Behav. 70, 1047–1053 (2005).

    Article  Google Scholar 

  • 53.

    Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor, L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19, 321–325 (2006).

    CAS  Article  PubMed  Google Scholar 

  • 54.

    Krams, I. A. et al. Male mealworm beetles increase resting metabolic rate under terminal investment. J. Evol. Biol. 27, 541–550 (2014).

    CAS  Article  PubMed  Google Scholar 

  • 55.

    Kivleniece, I., Krams, I., Daukšte, J., Krama, T. & Rantala, M. J. Sexual attractiveness of immune-challenged male mealworm beetles suggests terminal investment in reproduction. Anim. Behav. 80, 1015–1021 (2010).

    Article  Google Scholar 

  • 56.

    Reyes-Ramírez, A., Enríquez-Vara, J. N., Rocha-Ortega, M., Téllez-García, A. & Córdoba-Aguilar, A. Female choice for sick males over healthy males: Consequences for offspring. Ethology 125, 241–249 (2019).

    Article  Google Scholar 

  • 57.

    Oliveira, A. S., Braga, G. U. L. & Rangel, D. E. N. Metarhizium robertsii illuminated during mycelial growth produces conidia with increased germination speed and virulence. Fungal Biol. 122, 555–562 (2018).

    Article  PubMed  Google Scholar 

  • 58.

    Sasan, R. K. & Bidochka, M. J. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am. J. Bot. 99, 101–107 (2012).

    Article  PubMed  Google Scholar 

  • 59.

    Barelli, L., Moonjely, S., Behie, S. W. & Bidochka, M. J. Fungi with multifunctional lifestyles: Endophytic insect pathogenic fungi. Plant Mol. Biol. 90, 657–664 (2016).

    CAS  Article  PubMed  Google Scholar 

  • 60.

    Branine, M., Bazzicalupo, A. & Branco, S. Biology and applications of endophytic insect-pathogenic fungi. PLoS Pathog. 15, e1007831 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 61.

    Keyser, C. A., Thorup-Kristensen, K. & Meyling, N. V. Metarhizium seed treatment mediates fungal dispersal via roots and induces infections in insects. Fungal. Ecol. 11, 122–131 (2014).

    Article  Google Scholar 

  • 62.

    Castro, T. et al. Persistence of Brazilian isolates of the entomopathogenic fungi Metarhizium anisopliae and M. robertsii in strawberry crop soil after soil drench application. Agric. Ecosyst. Environ. 233, 361–369 (2016).

    Article  Google Scholar 

  • 63.

    Härdling, R. & Kokko, H. The evolution of prudent choice. Evol. Ecol. Res. 7, 697–715 (2005).

    Google Scholar 

  • 64.

    Venner, S., Bernstein, C., Dray, S. & Bel-Venner, M.-C. Make love not war: When should less competitive males choose low-quality but defendable females?. Am. Nat. 175, 650–661 (2010).

    Article  PubMed  Google Scholar 

  • 65.

    Bhattacharya, A. K., Ameel, J. J. & Waldbauer, G. P. A method for sexing living pupal and adult yellow mealworms. Ann. Entomol. Soc. Am. 63, 1783 (1970).

    Article  Google Scholar 

  • 66.

    Silva, W. O. B., Mitidieri, S., Schrank, A. & Vainstein, M. H. Production and extraction of an extracellular lipase from the entomopathogenic fungus, Metarhizium anisopliae. Process Biochem. 40, 321–326 (2005).

    Article  CAS  Google Scholar 

  • 67.

    Zhou, J., Jiang, W., Ding, J., Zhang, X. & Gao, S. Effect of Tween 80 and β-cyclodextrin on degradation of decabromodiphenyl ether (BDE-209) by white rot fungi. Chemosphere 70, 172–177 (2007).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 68.

    Liu, Y.-S. & Wu, J.-Y. Effects of Tween 80 and pH on mycelial pellets and exopolysaccharide production in liquid culture of a medicinal fungus. J. Ind. Microbiol. Biotechnol. 39, 623–628 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 69.

    Gerber, G. H. Reproductive behaviour and physiology of Tenebrio molitor (Coleoptera: Tenebrionidae). III. Histogenetic changes in the internal genitalia, mesenteron, and cuticle during sexual maturation. Can. J. Zool. 54, 990–1002 (1976).

    Article  Google Scholar 

  • 70.

    Briscoe, A. D. & Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471–510 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Team, R. C. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. https://www.R-project.org (2017).

  • 72.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. arXiv Prepr. arXiv1406.5823 (2014).

  • 73.

    Jaeger, B. Package ‘r2glmm’. R Found. Stat. Comput. Vienna Avail. CRAN R-Project org/package=R2glmm Stat https://doi.org/10.1002/sim.3429 (2017).

    Article  Google Scholar 

  • 74.

    Williams, G. C. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100, 687–690 (1966).

    Article  Google Scholar 

  • 75.

    Clutton-Brock, T. H. Reproductive effort and terminal investment in iteroparous animals. Am. Nat. 123, 212–229 (1984).

    Article  Google Scholar 

  • 76.

    Duffield, K. R., Bowers, E. K., Sakaluk, S. K. & Sadd, B. M. A dynamic threshold model for terminal investment. Behav. Ecol. Sociobiol. 71, 185 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 77.

    Jones, K. M., Monaghan, P. & Nager, R. G. Male mate choice and female fecundity in zebra finches. Anim. Behav. 62, 1021–1026 (2001).

    Article  Google Scholar 

  • 78.

    Griggio, M., Valera, F., Casas, A. & Pilastro, A. Males prefer ornamented females: A field experiment of male choice in the rock sparrow. Anim. Behav. 69, 1243–1250 (2005).

    Article  Google Scholar 

  • 79.

    Naud, M.-J., Curtis, J. M. R., Woodall, L. C. & Gaspar, M. B. Mate choice, operational sex ratio, and social promiscuity in a wild population of the long-snouted seahorse Hippocampus guttulatus. Behav. Ecol. 20, 160–164 (2008).

    Article  Google Scholar 

  • 80.

    Cutrera, A. P., Fanjul, M. S. & Zenuto, R. R. Females prefer good genes: MHC-associated mate choice in wild and captive tuco-tucos. Anim. Behav. 83, 847–856 (2012).

    Article  Google Scholar 

  • 81.

    Mobley, K. B., Chakra, M. A. & Jones, A. G. No evidence for size-assortative mating in the wild despite mutual mate choice in sex-role-reversed pipefishes. Ecol. Evol. 4, 67–78 (2014).

    Article  PubMed  Google Scholar 

  • 82.

    Tschinkel, W. R. & Willson, C. D. Inhibition of pupation due to crowding in some tenebrionid beetles. J. Exp. Zool. 176, 137–145 (1971).

    CAS  Article  PubMed  Google Scholar 

  • 83.

    Morales-Ramos, J. A. & Rojas, M. G. Effect of larval density on food utilization efficiency of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Econ. Entomol. 108, 2259–2267 (2015).

    CAS  Article  PubMed  Google Scholar 

  • 84.

    Morales-Ramos, J. A., Rojas, M. G., Kay, S., Shapiro-Ilan, D. I. & Tedders, W. L. Impact of adult weight, density, and age on reproduction of Tenebrio molitor (Coleoptera: Tenebrionidae). J. Entomol. Sci. 47, 208–220 (2012).

    Article  Google Scholar 

  • 85.

    Kraak, S. B. M. & Bakker, T. C. M. Mutual mate choice in sticklebacks: Attractive males choose big females, which lay big eggs. Anim. Behav. 56, 859–866 (1998).

    CAS  Article  PubMed  Google Scholar 

  • 86.

    Sandvik, M., Rosenqvist, G. & Berglund, A. Male and female mate choice affects offspring quality in a sex–role–reversed pipefish. Proc. R. Soc. Lond. Ser. B Biol. Sci. 267, 2151–2155 (2000).

    CAS  Article  Google Scholar 

  • 87.

    Drickamer, L. C., Gowaty, P. A. & Wagner, D. M. Free mutual mate preferences in house mice affect reproductive success and offspring performance. Anim. Behav. 65, 105–114 (2003).

    Article  Google Scholar 

  • 88.

    Bertram, S. M. et al. Linking mating preferences to sexually selected traits and offspring viability: Good versus complementary genes hypotheses. Anim. Behav. 119, 75–86 (2016).

    Article  Google Scholar 

  • 89.

    Bowers, E. K. et al. Sex-biased terminal investment in offspring induced by maternal immune challenge in the house wren (Troglodytes aedon). Proc. R. Soc. B Biol. Sci. 279, 2891–2898 (2012).

    Article  Google Scholar 

  • 90.

    Poulin, R. & Maure, F. Host manipulation by parasites: A look back before moving forward. Trends Parasitol. 31, 563–570 (2015).

    Article  PubMed  Google Scholar 

  • 91.

    August, C. J. The role of male and female pheromones in the mating behaviour of Tenebrio molitor. J. Insect Physiol. 17, 739–751 (1971).

    Article  Google Scholar 

  • 92.

    Font, E. & Desfilis, E. Courtship, mating, and sex pheromones in the mealworm beetle (Tenebrio molitor). In Exploring Animal Behavior in Laboratory and Field (eds. Ploger, B. J. & Yasukawa, K.) 43–58 (Elsevier, New York, 2003).

  • 93.

    Obata, S. & Hidaka, T. Experimental analysis of mating behavior in Tenebrio molitor L. (Coleoptera: Tenebrionidae). Appl. Entomol. Zool. 17, 60–66 (1982).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Environmental Solutions Initiative puts sustainability front and center at the MIT career fair

    Schrenk spruce leaf litter decomposition varies with snow depth in the Tianshan Mountains