in

Negative effects of cattle on soil carbon and nutrient pools reversed by megaherbivores

  • 1.

    du Toit, J. T. & Cumming, D. H. M. Functional significance of ungulate diversity in African savannas and the ecological implications of the spread of pastoralism. Biodivers. Conserv. 8, 1643–1661 (1999).

    • Google Scholar
  • 2.

    Reid, R. Savannas of our Birth: People, Wildlife, and Change in East Africa (Univ. California Press, 2012).

  • 3.

    Veblen, K. E., Porensky, L. M., Riginos, C. & Young, T. P. Are cattle surrogate wildlife? Savanna plant community composition explained by total herbivory more than herbivore type. Ecol. Appl. 26, 1610–1623 (2016).

    • Google Scholar
  • 4.

    du Toit, J. T., Kock, R. & Deutsch, J. Wild Rangelands: Conserving Wildlife while Maintaining Livestock in Semi-arid Ecosystems (Wiley-Blackwell, 2010).

  • 5.

    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).

    • Google Scholar
  • 6.

    Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).

    • CAS
    • Google Scholar
  • 7.

    Hempson, G. P., Archibald, S. & Bond, W. J. The consequences of replacing wildlife with livestock in Africa. Sci. Rep. 7, 17196 (2017).

    • Google Scholar
  • 8.

    Young, T. P. et al. Relationships between cattle and biodiversity in multiuse landscape revealed by Kenya Long-term Exclosure Experiment. Rangel. Ecol. Manag. 71, 281–291 (2018).

    • Google Scholar
  • 9.

    Keesing, F. et al. Consequences of integrating livestock and wildlife in an African savanna. Nat. Sustain. 1, 566–573 (2018).

    • Google Scholar
  • 10.

    Asner, G. P., Vaughn, N., Smit, I. P. J. & Levick, S. Ecosystem-scale effects of megafauna in African savannas. Ecography 39, 240–252 (2016).

    • Google Scholar
  • 11.

    Young, T. P., Palmer, T. M. & Gadd, M. E. Competition and compensation among cattle, zebras, and elephants in a semi-arid savanna in Laikipia, Kenya. Biol. Conserv. 122, 351–359 (2005).

    • Google Scholar
  • 12.

    Kimuyu, D. M. et al. Influence of cattle on browsing and grazing wildlife varies with rainfall and presence of megaherbivores. Ecol. Appl. 27, 786–798 (2017).

    • Google Scholar
  • 13.

    Augustine, D. J., McNaughton, S. J. & Frank, D. A. Feedbacks between soil nutrients and large herbivores in a managed savanna ecosystem. Ecol. Appl. 13, 1325–1337 (2003).

    • Google Scholar
  • 14.

    Le Roux, E., Kerley, G. I. H. & Cromsigt, J. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499.e3 (2018).

    • Google Scholar
  • 15.

    Veldhuis, M. P., Gommers, M. I., Olff, H. & Berg, M. P. Spatial redistribution of nutrients by large herbivores and dung beetles in a savanna ecosystem. J. Ecol. 106, 422–433 (2018).

    • CAS
    • Google Scholar
  • 16.

    van der Waal, C. et al. Large herbivores may alter vegetation structure of semi-arid savannas through soil nutrient mediation. Oecologia 165, 1095–1107 (2011).

    • Google Scholar
  • 17.

    Augustine, D. J. Long-term, livestock-mediated redistribution of nitrogen and phosphorus in an East African savanna. J. Appl. Ecol. 40, 137–149 (2003).

    • Google Scholar
  • 18.

    Veblen, K. E. Savanna glade hotspots: plant community development and synergy with large herbivores. J. Arid Environ. 78, 119–127 (2012).

    • Google Scholar
  • 19.

    Cech, P. G., Olde Venterink, H. & Edwards, P. J. N and P cycling in Tanzanian humid savanna: influence of herbivores, fire, and N2-fixation. Ecosystems 13, 1079–1096 (2010).

    • CAS
    • Google Scholar
  • 20.

    Marshall, F. et al. Ancient herders enriched and restructured African grasslands. Nature 561, 387–390 (2018).

    • CAS
    • Google Scholar
  • 21.

    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).

    • CAS
    • Google Scholar
  • 22.

    Owen-Smith, N. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).

  • 23.

    Kerley, G. et al. in Elephant Management: A Scientific Assessment for South Africa (eds Scholes, R. & Mennell, K.) 146–205 (Witwatersrand Univ. Press, 2008).

  • 24.

    Sitters, J., Edwards, P. J. & Olde Venterink, H. Increases of soil C, N, and P pools along an Acacia tree density gradient and their effects on trees and grasses. Ecosystems 16, 347–357 (2013).

    • CAS
    • Google Scholar
  • 25.

    Blaser, W. J., Sitters, J., Hart, S. P., Edwards, P. J. & Olde Venterink, H. Facilitative or competitive effects of woody plants on understorey vegetation depend on N-fixation, canopy shape and rainfall. J. Ecol. 101, 1598–1603 (2013).

    • Google Scholar
  • 26.

    Young, T., Okello, B., Kinyua, D. & Palmer, T. KLEE: A long-term multi-species herbivore exclusion experiment in Laikipia, Kenya. Afr. J. Range Forage Sci. 14, 94–102 (1997).

    • Google Scholar
  • 27.

    Riginos, C. et al. Lessons on the relationship between livestock husbandry and biodiversity from the Kenya Long-term Exclosure Experiment (KLEE). Pastor. Res. Policy Pract. 2, 10 (2012).

    • Google Scholar
  • 28.

    Charles, G. K., Porensky, L. M., Riginos, C., Veblen, K. E. & Young, T. P. Herbivore effects on productivity vary by guild: cattle increase mean productivity while wildlife reduce variability. Ecol. Appl. 27, 143–155 (2017).

    • Google Scholar
  • 29.

    Riginos, C., Porensky, L. M., Veblen, K. E. & Young, T. P. Herbivory and drought generate short-term stochasticity and long-term stability in a savanna understory community. Ecol. Appl. 28, 323–335 (2018).

    • Google Scholar
  • 30.

    Odadi, W. O., Okeyo-Owuor, J. B. & Young, T. P. Behavioural responses of cattle to shared foraging with wild herbivores in an East African rangeland. Appl. Anim. Behav. Sci. 116, 120–125 (2009).

    • Google Scholar
  • 31.

    Kimuyu, D. M., Sensenig, R. L., Riginos, C., Veblen, K. E. & Young, T. P. Native and domestic browsers and grazers reduce fuels, fire temperatures, and acacia ant mortality in an African savanna. Ecol. Appl. 24, 741–749 (2014).

    • Google Scholar
  • 32.

    Goheen, J. R. et al. Conservation lessons from large-mammal manipulations in East African savannas: the KLEE, UHURU, and GLADE experiments. Ann. N. Y. Acad. Sci. 1429, 31–49 (2018).

    • Google Scholar
  • 33.

    Fox-Dobbs, K., Doak, D. F., Brody, A. K. & Palmer, T. M. Termites create spatial structure and govern ecosystem function by affecting N2 fixation in an East African savanna. Ecology 91, 1296–1307 (2010).

    • Google Scholar
  • 34.

    Ritchie, M. E. & Raina, R. Effects of herbivores on nitrogen fixation by grass endophytes, legume symbionts and free-living soil surface bacteria in the Serengeti. Pedobiologia 59, 233–241 (2016).

    • Google Scholar
  • 35.

    Sitters, J., Edwards, P. J., Suter, W. & Olde Venterink, H. O. Acacia tree density strongly affects N and P fluxes in savanna. Biogeochemistry 123, 285–297 (2015).

    • CAS
    • Google Scholar
  • 36.

    Kelemu, S. et al. Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr. J. Biotechnol. 10, 965–976 (2011).

    • Google Scholar
  • 37.

    Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).

    • Google Scholar
  • 38.

    Craine, J. M. et al. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396, 1–26 (2015).

    • CAS
    • Google Scholar
  • 39.

    Frank, D. A. & Evans, R. D. Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78, 2238–2248 (1997).

    • Google Scholar
  • 40.

    Cech, P. G., Kuster, T., Edwards, P. J. & Olde Venterink, H. Effects of herbivory, fire and N2-fixation on nutrient limitation in a humid African savanna. Ecosystems 11, 991–1004 (2008).

    • CAS
    • Google Scholar
  • 41.

    McNaughton, S. J., Banyikwa, F. F. & McNaughton, M. M. Promotion of the cycling of diet-enhancing nutrients by African grazers. Science 278, 1798–1800 (1997).

    • CAS
    • Google Scholar
  • 42.

    Augustine, D. J. & McNaughton, S. J. Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256 (2006).

    • CAS
    • Google Scholar
  • 43.

    Anderson, T. M., Ritchie, M. E. & McNaughton, S. J. Rainfall and soils modify plant community response to grazing in Serengeti National Park. Ecology 88, 1191–1201 (2007).

    • Google Scholar
  • 44.

    Holdo, R. M. & Mack, M. C. Functional attributes of savanna soils: contrasting effects of tree canopies and herbivores on bulk density, nutrients and moisture dynamics. J. Ecol. 102, 1171–1182 (2014).

    • CAS
    • Google Scholar
  • 45.

    van Langevelde, F. et al. Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84, 337–350 (2003).

    • Google Scholar
  • 46.

    Sankaran, M., Ratnam, J. & Hanan, N. Woody cover in African savannas: the role of resources, fire and herbivory. Glob. Ecol. Biogeogr. 17, 236–245 (2008).

    • Google Scholar
  • 47.

    Tobler, M. W., Cochard, R. & Edwards, P. J. The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania. J. Appl. Ecol. 40, 430–444 (2003).

    • Google Scholar
  • 48.

    Okigbo, B. N. in Ecology and Management of the World’s Savannas (eds Tothill, J. C. & Mott, J. J.) 95–113 (Australian Academy of Science, 1985).

  • 49.

    McClenachan, L., Cooper, A. B. & Dulvy, N. K. Rethinking trade-driven extinction risk in marine and terrestrial megafauna. Curr. Biol. 26, 1640–1646 (2016).

    • CAS
    • Google Scholar
  • 50.

    Ahmad, N. in Vertisols and Technologies for their Management (eds Ahmad, N. & Mermut, A.) 1–41 (Elsevier, 1996).

  • 51.

    Bergstrom, B. J., Sensenig, R. L., Augustine, D. J. & Young, T. P. Searching for cover: soil enrichment and herbivore exclusion, not fire, enhance African savanna small-mammal abundance. Ecosphere 9, e02519 (2018).

    • Google Scholar
  • 52.

    Schleppi, P., Conedera, M., Sedivy, I. & Thimonier, A. Correcting non-linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs. Agric. For. Meteorol. 144, 236–242 (2007).

    • Google Scholar
  • 53.

    Thimonier, A., Sedivy, I. & Schleppi, P. Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. Eur. J. For. Res. 129, 543–562 (2010).

    • Google Scholar
  • 54.

    R Core Team R: A Language and Environment for Statistical Computing Version 3.4.3 (2019); https://www.R-project.org/

  • 55.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and nonlinear mixed effects models. R package version 3.1-144 (2020); https://CRAN.R-project.org/package=nlme

  • 56.

    Lenth, R. V. Least-Squares Means: the package. J. Stat. Softw. 69, 1–33 (2016).

    • Google Scholar

  • Source: Ecology - nature.com

    Native plants for greening Mediterranean agroecosystems

    Scientists quantify how wave power drives coastal erosion