in

Neutral syndrome

  • 1.

    Darwin, C.R. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. (John Murray, 1859).

  • 2.

    Macarthur, R. H. On the relative abundance of bird species. Proc. Natl Acad. Sci. USA 43, 293–295 (1957).

  • 3.

    Hutchinson, G. E. Homage to Santa Rosalia, or, why are there so many kinds of animals? Am. Nat. 153, 145–159 (1959).

    • Google Scholar
  • 4.

    Community Structure and the Niche (ed. Giller, P.) (Chapman and Hall, 1984).

  • 5.

    Chase, J.M. & Leibold, M. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

  • 6.

    Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).

  • 7.

    Dobzhansky, T. Genetics and the Origin of Species (Columbia University Press; 1951., 1951).

  • 8.

    Levene, H. Genetic equilibrium when more than one ecological niche is available. Am. Nat. 87, 331–333 (1953).

    • Google Scholar
  • 9.

    Clarke, B. C. The evolution of genetic diversity. Proc. R. Soc. Lond. B Biol. Sci. 205, 453–474 (1979).

  • 10.

    Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. New Phytol. 201, 45–56 (2014).

    • PubMed
    • Google Scholar
  • 11.

    Merlo, L. M., Pepper, J. W., Reid, B. J. & Maley, C. C. Cancer as an evolutionary and ecological process. Nat. Rev. Cancer 6, 924–935 (2006).

  • 12.

    Plaks, V., Kong, N. & Werb, Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16, 225–238 (2015).

  • 13.

    Chamberlin, E. H. The product as an economic variable. Q. J. Econ. 67, 1–29 (1953).

    • Google Scholar
  • 14.

    Hotelling, H. Stability in competition. Econ. J. (Lond.) 153, 41–57 (1929).

    • Google Scholar
  • 15.

    Lancaster, K. The economics of product variety: a survey. Mark. Sci. 9, 189–206 (1990).

    • Google Scholar
  • 16.

    Saviotti, P.P. Technological Evolution, Variety and the Economy (Edward Elgar, 1996).

  • 17.

    Hannan, M. T. & Freeman, J. The population ecology of organizations. Am. J. Sociol. 82, 929–964 (1977).

    • Google Scholar
  • 18.

    Carroll, G. R. Concentration and specialization: dynamics of niche width in populations of organizations. Am. J. Sociol. 90, 1262–1283 (1985).

    • Google Scholar
  • 19.

    Singh, J. V. & Lumsden, C. J. Theory and research in organizational ecology. Annu. Rev. Sociol. 16, 161–195 (1990).

    • Google Scholar
  • 20.

    Gentzkow, M., Shapiro, J. M. & Sinkinson, M. Competition and ideological diversity: historical evidence from US newspapers. Am. Econ. Rev. 104, 3073–3114 (2014).

    • Google Scholar
  • 21.

    Fosfuri, A., Giarratana, M.S. & Sebrek, S.S. Resource partitioning and strategies in markets for technology. Strateg. Organ. https://doi.org/10.1177/1476127018791329 (2018).

  • 22.

    Kimura, M. & Crow, J. F. The number of alleles that can be maintained in a finite population. Genetics 49, 725–738 (1964).

  • 23.

    Crow, J. & Kimura, M. An Introduction to Population Genetics Theory. (Harper and Row, 1970).

  • 24.

    Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton University Press, 2001).

  • 25.

    Bell, G. Neutral macroecology. Science 293, 2413–2418 (2001).

  • 26.

    Neiman, F. Stylistic variation in evolutionary perspective–inferences from decorative diversity and interassemblage distance in Illinois woodland ceramic assemblages. American Antiquity 60, 7–36 (1995).

    • Google Scholar
  • 27.

    Shennan, S. & Wilkinson, J. Ceramic style change and neutral evolution: a case study from Neolithic Europe. Am. Antiq. 66, 577–593 (2001).

    • Google Scholar
  • 28.

    Hahn, M. W. & Bentley, R. A. Drift as a mechanism for cultural change: an example from baby names. Proc. Biol. Sci. 270(Suppl 1), S120–S123 (2003).

  • 29.

    Bentley, R. A., Hahn, M. W. & Shennan, S. J. Random drift and culture change. Proc. Biol. Sci. 271, 1443–1450 (2004).

  • 30.

    Bentley, R. A., Lipo, C. P., Herzog, H. A. & Hahn, M. W. Regular rates of popular culture change reflect random copying. Evol. Hum. Behav. 28, 151–158 (2007).

    • Google Scholar
  • 31.

    Lycett, S. J. Acheulean variation and selection: does handaxe symmetry fit neutral expectations? J. Archaeol. Sci. 35, 2640–2648 (2008).

    • Google Scholar
  • 32.

    Schauer, P. Cultural Evolution in the Age of Athens: Drift and Selection in Greek Figure-Painted Pottery. PhD thesis (University College London, 2008).

  • 33.

    Bentley, R. A., Ormerod, P. & Shennan, S. Population-level neutral model already explains linguistic patterns. Proc. Bio.Sci. 278, 1770–1772 (2011). discussion 1773–1776.

    • Google Scholar
  • 34.

    Acerbi, A. & Bentley, R. A. Biases in cultural transmission shape the turnover of popular traits. Evol. Hum. Behav. 35, 228–236 (2014).

    • Google Scholar
  • 35.

    ElBahrawy, A., Alessandretti, L., Kandler, A., Pastor-Satorras, R. & Baronchelli, A. Evolutionary dynamics of the cryptocurrency market. R. Soc. Open Sci. 4, 170623–170623 (2017).

  • 36.

    Newberry, M. G., Ahern, C. A., Clark, R. & Plotkin, J. B. Detecting evolutionary forces in language change. Nature 551, 223–226 (2017).

  • 37.

    Simon, H. A. On a class of skew distribution functions. Biometrika 42, 425–440 (1955).

    • Google Scholar
  • 38.

    Price, D. J. Networks of scientific papers. Science 149, 510–515 (1965).

  • 39.

    Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).

    • PubMed
    • Google Scholar
  • 40.

    Mitzenmacher, M. A brief history of generative models for power law and lognormal distributions. Internet Math. 1, 226–251 (2003).

    • Google Scholar
  • 41.

    Newman, M. E. J. Power laws, Pareto distributions and Zipf’s law. Contemporary Physics 46, 323–351 (2005).

    • Google Scholar
  • 42.

    Redner, S. Citation statistics from 110 years of Physical Review. Phys. Today 58, 49–54 (2005).

    • Google Scholar
  • 43.

    Ohta, T. & Gillespie, J. H. Development of neutral and nearly neutral theories. Theor. Popul. Biol. 49, 128–142 (1996).

  • 44.

    Kreitman, M. The neutral theory is dead. Long live the neutral theory. BioEssays 18, 678–683 (1996). discussion 683.

  • 45.

    Hey, J. The neutralist, the fly and the selectionist. Trends Ecol. Evol. 14, 35–38 (1999).

  • 46.

    Proulx, S. R. & Adler, F. R. The standard of neutrality: still flapping in the breeze? J. Evol. Biol. 23, 1339–1350 (2010).

  • 47.

    Kern, A. D. & Hahn, M. W. The Neutral Theory in light of natural selection. Mol. Biol. Evol. 35, 1366–1371 (2018).

  • 48.

    Jensen, J. D. et al. The importance of the Neutral Theory in 1968 and 50 years on: a response to Kern and Hahn 2018. Evolution 73, 111–114 (2019).

    • PubMed
    • Google Scholar
  • 49.

    Ricklefs, R. E. The unified neutral theory of biodiversity: do the numbers add up? Ecology 87, 1424–1431 (2006).

    • PubMed
    • Google Scholar
  • 50.

    Leigh, E. G. Jr. Neutral theory: a historical perspective. J. Evol. Biol. 20, 2075–2091 (2007).

    • PubMed
    • Google Scholar
  • 51.

    Clark, J. S. Beyond neutral science. Trends Ecol. Evol. 24, 8–15 (2009).

    • PubMed
    • Google Scholar
  • 52.

    Wennekes, P. L., Rosindell, J. & Etienne, R. S. The neutral-niche debate: a philosophical perspective. Acta Biotheor. 60, 257–271 (2012).

  • 53.

    Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).

    • PubMed
    • Google Scholar
  • 54.

    Clark, J. S. The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198–202 (2012).

    • PubMed
    • Google Scholar
  • 55.

    Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

  • 56.

    Tarabichi, M. et al. Neutral tumor evolution? Nat. Genet. 50, 1630–1633 (2018).

  • 57.

    Heide, T. et al. Reply to ‘Neutral tumor evolution?’. Nat. Genet. 50, 1633–1637 (2018).

  • 58.

    McDonald, T. O., Chakrabarti, S. & Michor, F. Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution. Nat. Genet. 50, 1620–1623 (2018).

  • 59.

    Werner, B., Williams, M. J., Barnes, C. P., Graham, T. A. & Sottoriva, A. Reply to ‘Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution’. Nat. Genet. 50, 1624–1626 (2018).

  • 60.

    Balaparya, A. & De, S. Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data. Nat. Genet. 50, 1626–1628 (2018).

  • 61.

    Williams, M. J. et al. Reply to ‘Revisiting signatures of neutral tumor evolution in the light of complexity of cancer genomic data’. Nat. Genet. 50, 1628–1630 (2018).

  • 62.

    Ayala, F. J. & Campbell, C. A. Frequency-dependent selection. Annu. Rev. Ecol. Syst. 5, 115–138 (1974).

    • Google Scholar
  • 63.

    Nosil, P. Frequency-dependent selection: when being different makes you not stand out. Curr. Biol. 16, R806–R808 (2006).

  • 64.

    Volkov, I., Banavar, J. R., He, F., Hubbell, S. P. & Maritan, A. Density dependence explains tree species abundance and diversity in tropical forests. Nature 438, 658–661 (2005).

  • 65.

    Adler, P. B., Hillerislambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).

    • PubMed
    • Google Scholar
  • 66.

    Boyd, R. & Richerson, P.J. Culture and the Evolutionary Process (University of Chicago Press, 1985).

  • 67.

    Richerson, P.J. & Boyd, R. Not by Genes Alone (University of Chicago Press, 2005).

  • 68.

    Morgan, T. J. H. & Laland, K. N. The biological bases of conformity. Front. Neurosci. 6, 87 (2012).

  • 69.

    Ohta, T. Population size and rate of evolution. J. Mol. Evol. 1, 305–314 (1972).

    • PubMed
    • Google Scholar
  • 70.

    Akashi, H., Osada, N. & Ohta, T. Weak selection and protein evolution. Genetics 192, 15–31 (2012).

  • 71.

    Willis, J.C. Age and Area: a Study in Geographical Distribution and Origin of Species (Cambridge University Press, 1922).

  • 72.

    Willis, J.C. The Course of Evolution by Differentiation or Divergent Mutation Rather Than by Selection (Cambridge University Press, 1940).

  • 73.

    Volkov, I., Banavar, J. R., Hubbell, S. P. & Maritan, A. Neutral theory and relative species abundance in ecology. Nature 424, 1035–1037 (2003).

  • 74.

    Bentley, R. A. & Shennan, S. J. Cultural Transmission and Stochastic Network Growth. Am. Antiq. 68, 459–485 (2003).

    • Google Scholar
  • 75.

    Herzog, H. A., Bentley, R. A. & Hahn, M. W. Random drift and large shifts in popularity of dog breeds. Proc. Biol. Sci. 271(Suppl 5), S353–S356 (2004).

  • 76.

    Bentley, R. A. Random drift versus selection in academic vocabulary: an evolutionary analysis of published keywords. PLoS One 3, e3057 (2008).

  • 77.

    Tomasových, A. & Kidwell, S. M. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36, 672–695 (2010).

    • Google Scholar
  • 78.

    Premo, L. S. & Scholnick, J. B. The spatial scale of social learning affects cultural diversity. American Antiquity 76, 163–176 (2011).

    • Google Scholar
  • 79.

    Premo, L. S. Cultural transmission and diversity in time-averaged assemblages. Curr. Anthropol. 55, 105–114 (2014).

    • Google Scholar
  • 80.

    Porcic, M. Exploring the effects of assemblage accumulation on diversity and innovation rate estimates in neutral, conformist, and anti-conformist models of cultural transmission. J. Archaeol. Method Theory 22, 1071–1092 (2015).

    • Google Scholar
  • 81.

    Albert, R., Jeong, H. & Barabási, A.-L. Diameter of the world-wide web. Nature 401, 130–131 (1999).

    • CAS
    • Google Scholar
  • 82.

    Lima-Mendez, G. & van Helden, J. The powerful law of the power law and other myths in network biology. Mol. Biosyst. 5, 1482–1493 (2009).

  • 83.

    Clauset, A., Shalizi, C. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).

    • Google Scholar
  • 84.

    Al Hammal, O., Alonso, D., Etienne, R. S. & Cornell, S. J. When can species abundance data reveal non-neutrality? PLOS Comput. Biol. 11, e1004134 (2015).

  • 85.

    Takeuchi, Y. & Innan, H. Evaluating the performance of neutrality tests of a local community using a niche-structured simulation model. Oikos 124, 1203–1214 (2015).

    • Google Scholar
  • 86.

    Brzezinski, M. Power laws in citation distributions: evidence from Scopus. Scientometrics 103, 213–228 (2015).

  • 87.

    McGill, B. J. A test of the unified neutral theory of biodiversity. Nature 422, 881–885 (2003).

  • 88.

    Etienne, R. & Olff, H. A novel genealogical approach to neutral biodiversity theory. Ecol. Lett. 7, 170–175 (2004).

    • Google Scholar
  • 89.

    McGill, B. J., Maurer, B. A. & Weiser, M. D. Empirical evaluation of neutral theory. Ecology 87, 1411–1423 (2006).

    • PubMed
    • Google Scholar
  • 90.

    Connolly, S. R. et al. Commonness and rarity in the marine biosphere. Proc. Natl Acad. Sci. USA 111, 8524–8529 (2014).

  • 91.

    Broido, A. D. & Clauset, A. Scale-free networks are rare. Nat. Commun. 10, 1017 (2019).

  • 92.

    Gillespie, J. The Causes of Molecular Evolution (Oxford University Press, 1991).

  • 93.

    Bell, G. The distribution of abundance in neutral communities. Am. Nat. 155, 606–617 (2000).

    • PubMed
    • Google Scholar
  • 94.

    Magurran, A. E. Species abundance distributions: pattern or process? Funct. Ecol. 19, 177–181 (2005).

    • Google Scholar
  • 95.

    McGill, B. J. et al. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett. 10, 995–1015 (2007).

    • PubMed
    • Google Scholar
  • 96.

    Purves, D. & Pacala, S. in Biotic Interactions in the Tropics (eds Burslem, D.F.R.P., Pinard, M.A. & Hartley, S.E.) 107–138 (Cambridge University Press, 2006).

  • 97.

    Matthews, T. J. & Whittaker, R. J. Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecol. Evol. 4, 2263–2277 (2014).

  • 98.

    Tokeshi, M. Species abundance patterns and community structure. Adv. Ecol. Res. 24, 111–186 (1993).

    • Google Scholar
  • 99.

    Rosindell, J., Cornell, S. J., Hubbell, S. P. & Etienne, R. S. Protracted speciation revitalizes the neutral theory of biodiversity. Ecol. Lett. 13, 716–727 (2010).

    • PubMed
    • Google Scholar
  • 100.

    Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).

  • 101.

    Ewens, W. J. The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3, 87–112 (1972).

  • 102.

    Ewens, W. Mathematical Population Genetics. 1. Theoretical Introduction (Springer, 2004).

  • 103.

    Slatkin, M. An exact test for neutrality based on the Ewens sampling distribution. Genet. Res. 64, 71–74 (1994).

  • 104.

    Slatkin, M. A correction to the exact test based on the Ewens sampling distribution. Genet. Res. 68, 259–260 (1996).

  • 105.

    Watterson, G. A. Heterosis or neutrality? Genetics 85, 789–814 (1977).

  • 106.

    Watterson, G. A. The homozygosity test of neutrality. Genetics 88, 405–417 (1978).

  • 107.

    Garrigan, D. & Hedrick, P. W. Perspective: detecting adaptive molecular polymorphism: lessons from the MHC. Evolution 57, 1707–1722 (2003).

  • 108.

    Lansing, J. S. et al. Male dominance rarely skews the frequency distribution of Y chromosome haplotypes in human populations. Proc. Natl Acad. Sci. USA 105, 11645–11650 (2008).

  • 109.

    Etienne, R. S. A neutral sampling formula for multiple samples and an ‘exact’ test of neutrality. Ecol. Lett. 10, 608–618 (2007).

    • PubMed
    • Google Scholar
  • 110.

    Jabot, F. & Chave, J. Analyzing tropical forest tree species abundance distributions using a nonneutral model and through approximate Bayesian inference. Am. Nat. 178, E37–E47 (2011).

    • PubMed
    • Google Scholar
  • 111.

    Steele, J., Glatz, C. & Kandler, A. Ceramic diversity, random copying, and tests for selectivity in ceramic production. J. Archaeol. Sci. 37, 1348–1358 (2010).

    • Google Scholar
  • 112.

    Fama, E. F. The behaviour of stock-market prices. J. Bus. 38, 34–105 (1965).

    • Google Scholar
  • 113.

    Fama, E. F. Efficient capital markets: a review of theory and empirical work. Finance 25, 383–417 (1970).

    • Google Scholar
  • 114.

    Poterba, J. M. & Summers, L. H. Mean reversion in stock prices: evidence and implications. J. Financ. Econ. 22, 27–59 (1988).

    • Google Scholar
  • 115.

    Bollback, J. P., York, T. L. & Nielsen, R. Estimation of 2Nes from temporal allele frequency data. Genetics 179, 497–502 (2008).

  • 116.

    Mathieson, I. & McVean, G. Estimating selection coefficients in spatially structured populations from time series data of allele frequencies. Genetics 193, 973–984 (2013).

  • 117.

    Feder, A. F., Kryazhimskiy, S. & Plotkin, J. B. Identifying signatures of selection in genetic time series. Genetics 196, 509–522 (2014).

    • PubMed
    • Google Scholar
  • 118.

    Malaspinas, A.-S., Malaspinas, O., Evans, S. N. & Slatkin, M. Estimating allele age and selection coefficient from time-serial data. Genetics 192, 599–607 (2012).

  • 119.

    Schraiber, J. G., Evans, S. N. & Slatkin, M. Bayesian inference of natural selection from allele frequency time series. Genetics 203, 493–511 (2016).

  • 120.

    Khatri, B. S. Quantifying evolutionary dynamics from variant-frequency time series. Sci. Rep. 6, 32497 (2016).

  • 121.

    Ferrer-Admetlla, A., Leuenberger, C., Jensen, J. D. & Wegmann, D. An approximate Markov model for the Wright-Fisher diffusion and its application to time series data. Genetics 203, 831–846 (2016).

  • 122.

    Tataru, P., Simonsen, M., Bataillon, T. & Hobolth, A. Statistical inference in the Wright-Fisher model using allele frequency data. Syst. Biol. 66, e30–e46 (2017).

    • PubMed
    • Google Scholar
  • 123.

    Good, B. H., McDonald, M. J., Barrick, J. E., Lenski, R. E. & Desai, M. M. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45–50 (2017).

  • 124.

    Crema, E., Edinborough, K., Kerig, T. & Shennan, S. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).

    • Google Scholar
  • 125.

    Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).

  • 126.

    Kandler, A. & Shennan, S. A generative inference framework for analysing patterns of cultural change in sparse population data with evidence for fashion trends in LBK culture. J. R. Soc. Interface 12, 20150905 (2015).

  • 127.

    Foll, M., Shim, H. & Jensen, J. D. WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Mol. Ecol. Resour. 15, 87–98 (2015).

    • PubMed
    • Google Scholar
  • 128.

    Shim, H., Laurent, S., Matuszewski, S., Foll, M. & Jensen, J. D. Detecting and quantifying changing selection intensities from time-sampled polymorphism data. G3 (Bethesda) 6, 893–904 (2016).

    • CAS
    • Google Scholar
  • 129.

    Chisholm, R. A. et al. Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett. 17, 855–865 (2014).

    • PubMed
    • Google Scholar
  • 130.

    Clark, J. S. & McLachlan, J. S. Stability of forest biodiversity. Nature 423, 635–638 (2003).

  • 131.

    Gillespie, J. H. A randomized SAS-CFF model of natural selection in a random environment. Theor. Popul. Biol. 21, 219–237 (1982).

    • Google Scholar
  • 132.

    Pham, T., Sheridan, P. & Shimodaira, H. Joint estimation of preferential attachment and node fitness in growing complex networks. Sci. Rep. 6, 32558 (2016).

  • 133.

    Golosovsky, M. Mechanisms of complex network growth: Synthesis of the preferential attachment and fitness models. Phys. Rev. E 97, 062310 (2018).

  • 134.

    Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell 173, 371–385.e18 (2018).

  • 135.

    Haegeman, B. & Loreau, M. A mathematical synthesis of niche and neutral theories in community ecology. J. Theor. Biol. 269, 150–165 (2011).

    • PubMed
    • Google Scholar
  • 136.

    Chisholm, R. A. & Pacala, S. W. Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proc. Natl Acad. Sci. USA 107, 15821–15825 (2010).

  • 137.

    Shmueli, G. To explain or to predict? Stat. Sci. 25, 289–310 (2010).

    • Google Scholar
  • 138.

    Chisholm, R. A. et al. Species-area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).

  • 139.

    Bell, G. Fluctuating selection: the perpetual renewal of adaptation in variable environments. Phil. Trans. R. Soc. Lond. B 365, 87–97 (2010).

    • Google Scholar
  • 140.

    Condit, R., Chisholm, R. A. & Hubbell, S. P. Thirty years of forest census at Barro Colorado and the importance of immigration in maintaining diversity. PLoS One 7, e49826 (2012).

  • 141.

    Leigh, E. G., Wright, S. J., Herre, E. A. & Putz, F. E. The decline of tree diversity on newly isolated tropical islands: A test of a null hypothesis and some implications. Evol. Ecol. 7, 76–102 (1993).

    • Google Scholar
  • 142.

    Chave, J. Neutral theory and community ecology. Ecol. Lett. 7, 241–253 (2004).

    • Google Scholar
  • 143.

    Hu, X.-S., He, F. & Hubbell, S. P. Neutral theory in macroecology and population genetics. Oikos 113, 548–556 (2006).

    • Google Scholar
  • 144.

    Alonso, D., Etienne, R. S. & McKane, A. J. The merits of neutral theory. Trends Ecol. Evol. 21, 451–457 (2006).

    • PubMed
    • Google Scholar
  • 145.

    Yule, G. A mathematical theory of evolution, based on the conclusions of Dr J. C. Willis, F.R.S. Phil. Trans. R. Soc. Lond. B 213, 21–87 (1924).

    • Google Scholar
  • 146.

    Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).

  • 147.

    Fisher, R. A. The Genetical Theory of Natural Selection. (Clarendon Press, Oxford, 1930).

    • Google Scholar
  • 148.

    Moran, P. A. Random processes in genetics. Math. Proc. Camb. Philos. Soc. 54, 60–71 (1958).

    • Google Scholar
  • 149.

    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).

  • 150.

    Harding, E. F. The probabilities of rooted tree- shapes generated by random bifurcation. Adv. Appl. Probab. 3, 44–77 (1971).

    • Google Scholar
  • 151.

    Mooers, A. & Heard, S. B. Inferring evolutionary process from the phylogenetic tree shape. Q. Rev. Biol. 72, 31–54 (1997).

    • Google Scholar
  • 152.

    Nee, S. Birth-death models in macroevolution. Annu. Rev. Ecol. Evol. Syst. 200, 1–17 (2006).

    • Google Scholar
  • 153.

    Zipf, G.K. Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology (Addison-Wesley, 1949).

  • 154.

    Perc, M. The Matthew effect in empirical data. J. R. Soc. Interface 11, 20140378 (2014).

  • 155.

    Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. Europhys. Lett. 54, 436 (2001).

    • CAS
    • Google Scholar
  • 156.

    Kong, J. S., Sarshar, N. & Roychowdhury, V. P. Experience versus talent shapes the structure of the Web. Proc. Natl Acad. Sci. USA 105, 13724–13729 (2008).

  • 157.

    Vallade, M. & Houchmandzadeh, B. Analytical solution of a neutral model of biodiversity. Phys. Rev. E 68, 061902 (2003).

    • CAS
    • Google Scholar
  • 158.

    Alonso, D. & McKane, A. Sampling Hubbell’s neutral theory of biodiversity. Ecol. Lett. 7, 901–910 (2004).

    • Google Scholar

  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands