in

Organizing principles for vegetation dynamics

  • 1.

    Prentice, I. C. & Cowling, S. A. in Encyclopedia of Biodiversity 2nd edn (Ed. Levin, S. A.) 670–689 (Academic Press, 2013).

  • 2.

    Fisher, J. B., Huntzinger, D. N., Schwalm, C. R. & Sitch, S. Modeling the terrestrial biosphere. Annu. Rev. Env. Resour. 39, 91–123 (2014).

    • Article
    • Google Scholar
  • 3.

    Prentice, I. C., Liang, X., Medlyn, B. E. & Wang, Y. P. Reliable, robust and realistic: the three R’s of next-generation land-surface modelling. Atmos. Chem. Phys. 15, 5987–6005 (2015).

  • 4.

    Whitley, R. et al. Challenges and opportunities in land surface modelling of savanna ecosystems. Biogeosciences 14, 4711–4732 (2017).

    • Article
    • Google Scholar
  • 5.

    Pugh, T. A. M. et al. A large committed long-term sink of carbon due to vegetation dynamics. Earths Future 6, 1413–1432 (2018).

    • Article
    • Google Scholar
  • 6.

    Huang, Y., Gerber, S., Huang, T. & Lichstein, J. W. Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Global Biogeochem. Cy. 30, 1827–1846 (2016).

  • 7.

    Walker, A. P. et al. Predicting long-term carbon sequestration in response to CO2 enrichment: how and why do current ecosystem models differ? Global Biogeochem. Cy. 29, 476–495 (2015).

  • 8.

    Thurner, M. et al. Evaluation of climate‐related carbon turnover processes in global vegetation models for boreal and temperate forests. Glob. Change Biol. 23, 3076–3091 (2017).

    • Article
    • Google Scholar
  • 9.

    Xia, J., Yuan, W., Wang, Y.-P. & Zhang, Q. Adaptive carbon allocation by plants enhances the terrestrial carbon sink. Sci. Rep. 7, 3341 (2017).

  • 10.

    Montané, F. et al. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests. Geosci. Model Dev. 10, 3499–3517 (2017).

    • Article
    • Google Scholar
  • 11.

    Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO2 Enrichment studies. New Phytol. 202, 803–822 (2014).

  • 12.

    Sulman, B. N. et al. Diverse mycorrhizal associations enhance terrestrial C storage in a global model. Global Biogeochem. Cy. 33, 501–523 (2019).

  • 13.

    Fyllas, N. et al. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v. 1). Geosci. Model Dev. 7, 1251–1269 (2014).

  • 14.

    Sakschewski, B. et al. Resilience of Amazon forests emerges from plant trait diversity. Nat. Clim. Change 6, 1032–1036 (2016).

    • Article
    • Google Scholar
  • 15.

    Gaillard, C. et al. African shrub distribution emerges via a trade-off between height and sapwood conductivity. J. Biogeogr. 45, 2815–2826 (2018).

    • Article
    • Google Scholar
  • 16.

    Langan, L., Higgins, S. I. & Scheiter, S. Climate-biomes, pedo-biomes or pyro-biomes: which world view explains the tropical forest–savanna boundary in South America? J. Biogeogr. 44, 2319–2330 (2017).

    • Article
    • Google Scholar
  • 17.

    Thornley, J. H. M. Modelling shoot:root relations: the only way forward? Ann. Bot. 81, 165–171 (1998).

    • Article
    • Google Scholar
  • 18.

    Chen, J. L. & Reynolds, J. F. A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot. 80, 45–55 (1997).

  • 19.

    Bloom, A. J. Plant economics. Trends Ecol. Evol. 1, 98–100 (1986).

  • 20.

    Franklin, O. Optimal nitrogen allocation controls tree responses to elevated CO2. New Phytol. 174, 811–822 (2007).

  • 21.

    Franklin, O. et al. Forest fine-root production and nitrogen use under elevated CO2: contrasting responses in evergreen and deciduous trees explained by a common principle. Glob. Change Biol. 15, 132–144 (2009).

    • Article
    • Google Scholar
  • 22.

    Schymanski, S. J., Roderick, M. L. & Sivapalan, M. Using an optimality model to understand medium and long-term responses of vegetation water use to elevated atmospheric CO2 concentrations. AoB PLANTS 7, plv060 (2015).

  • 23.

    Wang, H. et al. Towards a universal model for carbon dioxide uptake by plants. Nat. Plants 3, 734–741 (2017).

  • 24.

    Bloomfield, K. J. et al. The validity of optimal leaf traits modelled on environmental conditions. New Phytol. 221, 1409–1423 (2019).

  • 25.

    Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).

  • 26.

    Eller, C. B. et al. Modelling tropical forest responses to drought and El Niño with a stomatal optimization model based on xylem hydraulics. Philos. T. R. Soc. Lon. B 373, 20170315 (2018).

  • 27.

    Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Sy. 11, 485–513 (2019).

    • Article
    • Google Scholar
  • 28.

    De Kauwe, M. G. et al. A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geosci. Model Dev. 8, 431–452 (2015).

    • Article
    • Google Scholar
  • 29.

    Franks, P. J. et al. Comparing optimal and empirical stomatal conductance models for application in Earth system models. Glob. Change Biol. 24, 5708–5723 (2018).

    • Article
    • Google Scholar
  • 30.

    Xu, C. et al. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PLoS ONE 7, e37914 (2012).

  • 31.

    Weng, E. et al. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12, 2655–2694 (2015).

    • Article
    • Google Scholar
  • 32.

    Fisher, R. A. et al. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). Geosci. Model Dev. 8, 3593–3619 (2015).

    • Article
    • Google Scholar
  • 33.

    Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).

    • Article
    • Google Scholar
  • 34.

    Manzoni, S., Vico, G., Palmroth, S., Porporato, A. & Katul, G. Optimization of stomatal conductance for maximum carbon gain under dynamic soil moisture. Adv. Water Resour. 62, 90–105 (2013).

  • 35.

    Dewar, R. et al. New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol. 217, 571–585 (2018).

  • 36.

    Schymanski, S. J., Sivapalan, M., Roderick, M., Hutley, L. B. & Beringer, J. An optimality‐based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45, W01412 (2009).

    • Article
    • Google Scholar
  • 37.

    Guswa, A. J. Effect of plant uptake strategy on the water−optimal root depth. Water Resour. Res. 46, W09601 (2010).

    • Article
    • Google Scholar
  • 38.

    Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: implications for hydrological modeling. Water Resour. Res. 52, 8260–8276 (2016).

    • Article
    • Google Scholar
  • 39.

    Franklin, O. et al. Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012).

  • 40.

    King, D. A. The adaptive significance of tree height. Am. Nat. 135, 809–828 (1990).

    • Article
    • Google Scholar
  • 41.

    Farrior, C. E., Rodriguez-Iturbe, I., Dybzinski, R., Levin, S. A. & Pacala, S. W. Decreased water limitation under elevated CO2 amplifies potential for forest carbon sinks. Proc. Natl Acad. Sci. USA 112, 7213–7218 (2015).

  • 42.

    Franklin, O., Palmroth, S. & Näsholm, T. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity. Tree Physiol. 34, 1149–1166 (2014).

  • 43.

    Hikosaka, K. & Anten, N. P. R. An evolutionary game of leaf dynamics and its consequences for canopy structure. Funct. Ecol. 26, 1024–1032 (2012).

    • Article
    • Google Scholar
  • 44.

    Valentine, H. T. & Mäkelä, A. Modeling forest stand dynamics from optimal balances of carbon and nitrogen. New Phytol. 194, 961–971 (2012).

  • 45.

    Farrior, C. E. et al. Resource limitation in a competitive context determines complex plant responses to experimental resource additions. Ecology 94, 2505–2517 (2013).

  • 46.

    Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation – an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).

  • 47.

    Wolf, A., Anderegg, W. R. L. & Pacala, S. W. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proc. Natl Acad. Sci. USA 113, E7222–E7230 (2016).

  • 48.

    Yang, J., Cao, M. & Swenson, N. G. Why functional traits do not predict tree demographic rates. Trends Ecol. Evol. 33, 326–336 (2018).

  • 49.

    Dong, N. et al. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14, 481–495 (2017).

  • 50.

    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).

    • Article
    • Google Scholar
  • 51.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

  • 52.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

  • 53.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    • Article
    • Google Scholar
  • 54.

    McMurtrie, R. E. & Dewar, R. C. Leaf-trait variation explained by the hypothesis that plants maximize their canopy carbon export over the lifespan of leaves. Tree Physiol. 31, 1007–1023 (2011).

  • 55.

    Maire, V. et al. Disentangling coordination among functional traits using an individual-centred model: impact on plant performance at intra- and inter-specific levels. PLoS ONE 8, e77372 (2013).

  • 56.

    McNickle, G. G., Gonzalez-Meler, M. A., Lynch, D. J., Baltzer, J. L. & Brown, J. S. The world’s biomes and primary production as a triple tragedy of the commons foraging game played among plants. P. Roy. Soc. Lond. B-Biol. Sci. 283, 20161993 (2016).

    • Article
    • Google Scholar
  • 57.

    Marks, C. O. The causes of variation in tree seedling traits: the roles of environmental selection versus chance. Evolution 61, 455–469 (2007).

  • 58.

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014).

  • 59.

    Laughlin, D. C. & Messier, J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol. Evol. 30, 487–496 (2015).

  • 60.

    Clark, J. S. Why species tell more about traits than traits about species: predictive analysis. Ecology 97, 1979–1993 (2016).

  • 61.

    Achat, D. L., Augusto, L., Gallet-Budynek, A. & Loustau, D. Future challenges in coupled C-N-P cycle models for terrestrial ecosystems under global change: a review. Biogeochemistry 131, 173–202 (2016).

  • 62.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

  • 63.

    de Almeida Castanho, A. D. et al. Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use. Global Biogeochem. Cy. 30, 18–39 (2016).

  • 64.

    Kleidon, A., Fraedrich, K. & Low, C. Multiple steady-states in the terrestrial atmosphere-biosphere system: a result of a discrete vegetation classification? Biogeosciences 4, 707–714 (2007).

    • Article
    • Google Scholar
  • 65.

    Lavorel, S. et al. in Terrestrial Ecosystems in a Changing World (eds Canadell, J. G. et al.) 149–164 (Springer, 2007).

  • 66.

    Follows, M. J., Dutkiewicz, S., Grant, S. & Chisholm, S. W. Emergent biogeography of microbial communities in a model ocean. Science 315, 1843–1846 (2007).

  • 67.

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

  • 68.

    Falster, D. S., Brännström, Å., Westoby, M. & Dieckmann, U. Multitrait successional forest dynamics enable diverse competitive coexistence. Proc. Natl Acad. Sci. USA 114, E2719–E2728 (2017).

  • 69.

    Pavlick, R., Drewry, D. T., Bohn, K., Reu, B. & Kleidon, A. The jena diversity-dynamic global vegetation model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences 10, 4137–4177 (2013).

    • Article
    • Google Scholar
  • 70.

    Hofbauer, J. & Sigmund, K. The Theory of Evolution and Dynamical Systems: Mathematical Aspects of Selection (Cambridge Univ. Press, 1988).

  • 71.

    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

  • 72.

    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).

    • Article
    • Google Scholar
  • 73.

    Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y. & Moorcroft, P. R. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res. Biogeosci. 114, G01002 (2009).

    • Article
    • Google Scholar
  • 74.

    Fisher, R. A. et al. Vegetation demographics in Earth System Models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).

    • Article
    • Google Scholar
  • 75.

    Loreau, M. From Populations to Ecosystems: Theoretical Foundations for a new Ecological Synthesis (MPB-46) (Princeton Univ. Press, 2010).

  • 76.

    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait-based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

  • 77.

    Clark, J. S. et al. Resolving the biodiversity paradox. Ecol. Lett. 10, 647–659 (2007).

  • 78.

    Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).

  • 79.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  • 80.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

  • 81.

    García-Palacios, P., Gross, N., Gaitán, J. & Maestre, F. T. Climate mediates the biodiversity–ecosystem stability relationship globally. Proc. Natl Acad. Sci. USA 115, 8400–8405 (2018).

  • 82.

    Weiner, J., Stoll, P., Muller-Landau, H. & Jasentuliyana, A. The effects of density, spatial pattern, and competitive symmetry on size variation in simulated plant populations. Am. Nat. 158, 438–450 (2001).

  • 83.

    Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–586 (2001).

    • Article
    • Google Scholar
  • 84.

    Strigul, N., Pristinski, D., Purves, D., Dushoff, J. & Pacala, S. Scaling from trees to forests: tractable macroscopic equations for forest dynamics. Ecol. Monogr. 78, 523–545 (2008).

    • Article
    • Google Scholar
  • 85.

    Purves, D. W., Lichstein, J. W., Strigul, N. & Pacala, S. W. Predicting and understanding forest dynamics using a simple tractable model. Proc. Natl Acad. Sci. USA 105, 17018–17022 (2008).

  • 86.

    Dybzinski, R., Farrior, C., Wolf, A., Reich, P. B. & Pacala, S. W. Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am. Nat. 177, 153–166 (2011).

  • 87.

    Farrior, C., Bohlman, S., Hubbell, S. & Pacala, S. W. Dominance of the suppressed: power-law size structure in tropical forests. Science 351, 155–157 (2016).

  • 88.

    Favier, C., Chave, J., Fabing, A., Schwartz, D. & Dubois, M. A. Modelling forest–savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity. Ecol. Model. 171, 85–102 (2004).

    • Article
    • Google Scholar
  • 89.

    Meron, E. Pattern-formation approach to modelling spatially extended ecosystems. Ecol. Model. 234, 70–82 (2012).

    • Article
    • Google Scholar
  • 90.

    Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

  • 91.

    Meron, E. Pattern formation – a missing link in the study of ecosystem response to environmental changes. Math Biosci. 271, 1–18 (2016).

  • 92.

    Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E. A mathematical model of plants as ecosystem engineers. J. Theor. Biol. 244, 680–691 (2007).

  • 93.

    Glenn, E., Huete, A., Nagler, P. G. & Nelson, S. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors 8, 2136–2160 (2008).

  • 94.

    Jaynes, E. T. Probability Theory: the Logic of Science (Cambridge Univ. Press, 2003).

  • 95.

    Bertram, J. & Dewar, R. C. Statistical patterns in tropical tree cover explained by the different water demand of individual trees and grasses. Ecology 94, 2138–2144 (2013).

  • 96.

    Niinemets, U., Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973–993 (2015).

  • 97.

    Scheepens, J. F., Frei, E. S. & Stöcklin, J. Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164, 141–150 (2010).

  • 98.

    Caldararu, S., Purves, D. W. & Palmer, P. I. Phenology as a strategy for carbon optimality: a global model. Biogeosciences 11, 763–778 (2014).

    • Article
    • Google Scholar
  • 99.

    Farrior, C. E. Theory predicts plants grow roots to compete with only their closest neighbours. P. Roy. Soc. B-Biol. Sci. 286, 20191129 (2019).

    • Article
    • Google Scholar
  • 100.

    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

  • 101.

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter- and intraspecific variation on community-level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013).

    • Article
    • Google Scholar
  • 102.

    Shipley, B., Vile, D. & Garnier, É. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314, 812–814 (2006).

  • 103.

    Getzin, S., Wiegand, K. & Schöning, I. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods Ecol. Evol. 3, 397–404 (2012).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands