in

Oxygen isotope effects during microbial sulfate reduction: applications to sediment cell abundances

  • 1.

    D’Hondt S, Rutherford S, Spivack AJ. Metabolic activity of subsurface life in deep-sea sediments. Science. 2002;295:2067–70.

  • 2.

    Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature. 1994;371:410–3.

    • Article
    • Google Scholar
  • 3.

    Biddle JF, Lipp JS, Lever MA, Lloyd KG, Srensen KB, Anderson R, et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. ProC Natl Acad Sci USA. 2006;103:3846–51.

  • 4.

    Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, Parkes RJ, et al. Prokaryotic cells of the deep sub-sea floor biosphere identified as living bacteria. Nature. 2005;433:861–4.

  • 5.

    Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean margin. Proc Natl Acad Sci USA. 2006;103:2815–20.

  • 6.

    Ar. Kormas K, Smith DC, Edgcomb V, Teske A. Molecular analysis of deep subsurface microbial communities in nankai trough sediments (ODP leg 190, site 1176). FEMS Microbiol Ecol. 2003;45:115–25.

  • 7.

    Amalfitano S, Fazi S. Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods. 2008;75:237–43.

  • 8.

    Kallmeyer J, Smith DC, Spivack AJ, D’ Hondt S. New cell extraction procedure applied to deep subsurface sediments. Limnol Oceanogr: Methods. 2008;6:236–45.

    • Article
    • Google Scholar
  • 9.

    Haglund A-L, Lantz P, Trnblom E, Tranvik L. Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microbiol Ecol. 2003;46:31–38.

  • 10.

    Novitsky JA. Microbial growth rates and biomass production in a marine sediment: evidence for a very active but mostly nongrowing community. Appl Environ Microbiol. 1987;53:2268–72.

    • Article
    • Google Scholar
  • 11.

    Leavitt WD, Halevy I, Bradley AS, Johnston DT. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc Natl Acad Sci. 2013;110:11244–9.

  • 12.

    Wing BA, Halevy I. Intracellular metabolite levels shape sulfur isotope fractionation during microbial sulfate respiration. Proc Natl Acad Sci. 2014;111:18116–25.

  • 13.

    Chambers LA, Trudinger PA, Smith JW, Burns MS. Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. Can J Microbiol. 1975;21:1602–7.

  • 14.

    Harrison AG, Thode HG. Mechanism of the bacterial reduction of sulphate from isotope fractionation studies. Trans Faraday Soc. 1958;54:84–92.

  • 15.

    Kaplan IR, Rittenberg SC. Microbiological fractionation of sulphur isotopes. J General Microbiol. 1964;34:195–202.

  • 16.

    Turchyn AV, Schrag DP. Oxygen isotope constraints on the sulfur cycle over the past 10 million years. Science. 2004;303:2004–7.

  • 17.

    Turchyn AV, Brochert V, Lyons TW, Engel GS, Balci N, Schrag DP, et al. Kinetic oxygen isotope effects during dissimilatory sulfate reduction: a combined theoretical and experimental approach. Geochimica et Cosmochimica Acta. 2010;74:2011–24.

  • 18.

    Turchyn AV, Schrag DP. Cenozoic evolution of the sulfur cycle: Insight from oxygen isotopes in marine sulfate. Earth Planet Sci Lett. 2006;241:763–79.

  • 19.

    Antler G, Turchyn AV, Ono S, Sivan O, Bosak T. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochimica et Cosmochimica Acta. 2017;203:364–80.

  • 20.

    Antler G, Turchyn AV, Rennie V, Herut B, Sivan O. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochimica et Cosmochimica Acta. 2013;118:98–117.

  • 21.

    Bottcher ME, Thamdrup B, Vennemann TW. Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur. Geochimica et Cosmochimica Acta. 2001;65:1601–9.

  • 22.

    Farquhar J, Canfield DE, Masterson A, Bao H, Johnston D. Sulfur and oxygen isotope study of sulfate reduction in experiments with natural populations from Faellestrand, Denmark. Geochimica et Cosmochimica Acta. 2008;72:2805–21.

  • 23.

    Bottcher ME, Oelschlager B, Hopner T, Brumsack H-J, Rullkotter J. Sulfate reduction related to the early diagenetic degradation of organic matter and black spot formation in tidal sand flats of the German Wadden sea (southern North Sea): stable isotope (13C, 34S, 18O) and other geochemical results. Org Geochem. 1998;29:1517–30.

  • 24.

    Brunner B, Bernasconi SM, Kleikemper J, Schroth MH. A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochimica et Cosmochimica Acta. 2005;69:4773–85.

  • 25.

    Fritz P, Basharmal GM, Drimmie RJ, Ibsen J, Qureshi RM. Oxygen isotope exchange between sulphate and water during bacterial reduction of sulphate. Chem Geol: Isotope Geosci Sect. 1989;79:99–105.

    • Google Scholar
  • 26.

    Johnston DT, Gill BC, Masterson A, Beirne E, Casciotti KL, Knapp AN, et al. Placing an upper limit on cryptic marine sulphur cycling. Nature. 2014;513:530–3.

  • 27.

    Mangalo M, Meckenstock RU, Stichler W, Einsiedl F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochimica et Cosmochimica Acta. 2007;71:4161–71.

  • 28.

    Mizutani Y, Rafter TA. Isotopic behavior of sulphate oxygen in the bacterial reduction of sulphate. Geochem J. 1973;6:183–91.

  • 29.

    Wankel SD, Bradley AS, Eldridge DL, Johnston DT. Determination and application of the equilibrium oxygen isotope effect between water and sulfite. Geochimica et Cosmochimica Acta. 2014;125:694–711.

  • 30.

    Wortmann UG, Chernyavsky B, Bernasconi SM, Brunner B, Bottcher ME, Swart PK. Oxygen isotope biogeochemistry of porewater sulfate in the deep biosphere: Dominance of isotope exchange reactions with ambient water during microbial sulfate reduction (ODP Site 1130). Geochimica et Cosmochimica Acta. 2007;71:4221–32.

  • 31.

    Zeebe RE. A new value for the stable oxygen isotope fractionation between dissolved sulfate ion and water. Geochimica et Cosmochimica Acta. 2010;74:818–28.

  • 32.

    Betts RH, Voss RH. The kinetics of oxygen exchange between the sulfite ion and water. Can J Chem. 1970;48:2035–41.

  • 33.

    Horner DA, Connick RE. Kinetics of oxygen exchange between the two isomers of bisulfite ion, disulfite ion (S2O52-), and water as studied by oxygen-17 nuclear magnetic resonance spectroscopy. Inorg Chem. 2003;42:1884–94.

  • 34.

    Muller IA, Brunner B, Breuer C, Coleman M, Bach W. The oxygen isotope equilibrium fractionation between sulfite species and water. Geochimica et Cosmochimica Acta. 2013;120:562–81.

  • 35.

    Muller IA, Brunner B, Coleman M. Isotopic evidence of the pivotal role of sulfite oxidation in shaping the oxygen isotope signature of sulfate. Chem Geol. 2013;354:186–202.

  • 36.

    Bradley AS, Leavitt WD, Schmidt M, Knoll AH, Girguis PR, Johnston DT. Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology. 2016;14:91–101.

  • 37.

    Johnston DT, Poulton SW, Fralick PW, Wing BA, Canfield DE, Farquhar J. Evolution of the oceanic sulfur cycle at the end of the Paleoproterozoic. Geochimica et Cosmochimica Acta. 2006;70:5723–39.

  • 38.

    Rees CE. A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta. 1973;37:1141–62.

  • 39.

    Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, et al. A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science. 2015;350:1541–5.

  • 40.

    Bradley AS, Leavitt WD, Johnston DT. Revisiting the dissimilatory sulfate reduction pathway. Geobiology. 2011;9:446–57.

  • 41.

    Brunner B, Einsiedl F, Arnold GL, Muller I, Templer S, Bernasconi SM. The reversibility of dissimilatory sulphate reduction and the cell-internal multi-step reduction of sulphite to sulphide: insights from the oxygen isotope composition of sulphate. Isotopes Environ Health Studies. 2012;48:33–54.

  • 42.

    Kohl IE, Asatryan R, Bao H. No oxygen isotope exchange between water and APS-sulfate at surface temperature: Evidence from quantum chemical modeling and triple-oxygen isotope experiments. Geochimica et Cosmochimica Acta. 2012;95:106–18.

  • 43.

    Geoffrey E, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Giovannetti M, et al. Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem. 2015;289:10919–29.

    • Google Scholar
  • 44.

    S. J., Hevey RC. Studies in sulfate esters. v. the mechanism of hydrolysis of phenyl phosphosulfate, a model system for 3’-phosphoadenosine 5’-phosphosulfate. J Am Chem Soc. 1970;92:4971–7.

    • Article
    • Google Scholar
  • 45.

    Wenk CB, Wing BA, Halevy I. Electron carriers in microbial sulfate reduction inferred from experimental and environmental sulfur isotope fractionations. ISME J. 2018;12:495–507.

  • 46.

    Elarowe D, Eamend J. Power limits for microbial life. Front Microbiol. 2015;6:718.

    • Google Scholar
  • 47.

    Kempes CP, van Bodegom PM, Wolpert D, Libby E, Amend J, Hoehler T. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol. 2017;8:31.

  • 48.

    AL, Masterson. Multiple sulfur isotope applications in diagenetic models and geochemical proxy records. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences; Harvard Library. 2016.

  • 49.

    Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jorgensen BB. Sulfate reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Environ Microbiol. 2009;11:1278–91.


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels