in

Palaeoproterozoic oxygenated oceans following the Lomagundi–Jatuli Event

  • 1.

    Karhu, J. A. & Holland, H. D. Carbon isotopes and the rise of atmospheric oxygen. Geology 24, 867–870 (1996).

    • Article
    • Google Scholar
  • 2.

    Martin, A. P., Condon, D. J., Prave, A. R. & Lepland, A. A review of temporal constraints for the Palaeoproterozoic large, positive carbonate carbon isotope excursion (the Lomagundi-Jatuli Event). Earth-Sci. Rev. 127, 242–261 (2013).

    • Article
    • Google Scholar
  • 3.

    Bekker, A. & Holland, H. D. Oxygen overshoot and recovery during the early Paleoproterozoic. Earth Planet. Sci. Lett. 317–318, 295–304 (2012).

    • Article
    • Google Scholar
  • 4.

    Planavsky, N. J., Bekker, A., Hofmann, A., Owens, J. D. & Lyons, T. W. Sulfur record of rising and falling marine oxygen and sulfate levels during the Lomagundi event. Proc. Natl Acad. Sci. USA 109, 18300–18305 (2012).

    • Article
    • Google Scholar
  • 5.

    Scott, C. et al. Pyrite multiple-sulfur isotope evidence for rapid expansion and contraction of the early Paleoproterozoic seawater sulfate reservoir. Earth Planet. Sci. Lett. 389, 95–104 (2014).

    • Article
    • Google Scholar
  • 6.

    Blättler, C. L. et al. Two-billion-year-old evaporites capture Earth’s great oxidation. Science 360, 320–323 (2018).

    • Article
    • Google Scholar
  • 7.

    Konhauser, K. O. et al. Aerobic bacterial pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011).

    • Article
    • Google Scholar
  • 8.

    Partin, C. A. et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369–370, 284–293 (2013).

    • Article
    • Google Scholar
  • 9.

    Kipp, M. A., Stüeken, E. E., Bekker, A. & Buick, R. Selenium isotopes record extensive marine suboxia during the Great Oxidation Event. Proc. Natl Acad. Sci. USA 114, 875–880 (2017).

    • Article
    • Google Scholar
  • 10.

    Sheen, A. I. et al. A model for the oceanic mass balance of rhenium and implications for the extent of Proterozoic ocean anoxia. Geochim. Cosmochim. Acta 227, 75–95 (2018).

    • Article
    • Google Scholar
  • 11.

    Canfield, D. E. et al. Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proc. Natl Acad. Sci. USA 110, 16736–16741 (2013).

    • Article
    • Google Scholar
  • 12.

    Bachan, A. & Kump, L. R. The rise of oxygen and siderite oxidation during the Lomagundi Event. Proc. Natl Acad. Sci. USA 112, 6562–6567 (2015).

    • Article
    • Google Scholar
  • 13.

    Miyazaki, Y., Planavsky, N., Bolton, E. W. & Reinhard, C. T. Making sense of massive carbon isotope excursions with an inverse carbon cycle model. J. Geophys. Res. Biogeosci. 123, 2485–2496 (2018).

    • Article
    • Google Scholar
  • 14.

    Melezhik, V. A., Fallick, A. E., Medvedev, P. V. & Makarikhin, V. V. Extreme 13Ccarb enrichment in ca. 2.0 Ga magnesite-stromatolite-dolomite-`red beds’ association in a global context: a case for the world-wide signal enhanced by a local environment. Earth-Sci. Rev. 48, 71–120 (1999).

    • Article
    • Google Scholar
  • 15.

    Eguchi, J., Seales, J. & Dasgupta, R. Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nat. Geosci. 13, 71–76 (2020).

    • Article
    • Google Scholar
  • 16.

    Martin, A. P. et al. Multiple Palaeoproterozoic carbon burial episodes and excursions. Earth Planet. Sci. Lett. 424, 226–236 (2015).

    • Article
    • Google Scholar
  • 17.

    Melezhik, V. A., Fallick, A. E., Brasier, A. T. & Lepland, A. Carbonate deposition in the Palaeoproterozoic Onega basin from Fennoscandia: a spotlight on the transition from the Lomagundi–Jatuli to Shunga events. Earth Sci. Rev. 147, 65–98 (2015).

    • Article
    • Google Scholar
  • 18.

    Kreitsmann, T. et al. Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia—implications for the preservation of primary C isotope signals. Chem. Geol. 512, 43–57 (2019).

    • Article
    • Google Scholar
  • 19.

    Sadler, P. M. The influence of hiatuses on sediment accumulation rates. GeoRes. Forum 5, 15–40 (1999).

    • Google Scholar
  • 20.

    Böning, P. et al. Geochemistry of Peruvian near-surface sediments. Geochim. Cosmochim. Acta 68, 4429–4451 (2004).

    • Article
    • Google Scholar
  • 21.

    Reinhard, C. T. et al. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357–5362 (2013).

    • Article
    • Google Scholar
  • 22.

    Wang, X. et al. A Mesoarchean shift in uranium isotope systematics. Geochim. Cosmochim. Acta 238, 438–452 (2018).

    • Article
    • Google Scholar
  • 23.

    Yang, S., Kendall, B., Lu, X., Zhang, F. & Zheng, W. Uranium isotope compositions of mid-Proterozoic black shales: evidence for an episode of increased ocean oxygenation at 1.36 Ga and evaluation of the effect of post-depositional hydrothermal fluid flow. Precambrian Res. 298, 187–201 (2017).

    • Article
    • Google Scholar
  • 24.

    Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002).

    • Article
    • Google Scholar
  • 25.

    Miller, C. A., Peucker-Ehrenbrink, B., Walker, B. D. & Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 75, 7146–7179 (2011).

    • Article
    • Google Scholar
  • 26.

    Crusius, J., Calvert, S., Pedersen, T. & Sage, D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition. Earth Planet. Sci. Lett. 145, 65–78 (1996).

    • Article
    • Google Scholar
  • 27.

    Anderson, R. F., Fleisher, M. Q. & LeHuray, A. P. Concentration, oxidation state, and particulate flux of uranium in the Black Sea. Geochim. Cosmochim. Acta 53, 2215–2224 (1989).

    • Article
    • Google Scholar
  • 28.

    Algeo, T. J. & Lyons, T. W. Mo–total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21, PA1016 (2006).

    • Article
    • Google Scholar
  • 29.

    Helz, G. R. et al. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochim. Cosmochim. Acta 60, 3631–3642 (1996).

    • Article
    • Google Scholar
  • 30.

    Kendall, B., Dahl, T. W. & Anbar, A. D. The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82, 683–732 (2017).

    • Article
    • Google Scholar
  • 31.

    Andersen, M. B., Stirling, C. H. & Weyer, S. Uranium isotope fractionation. Rev. Mineral. Geochem. 82, 799–850 (2017).

    • Article
    • Google Scholar
  • 32.

    Dickson, A. J. A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nat. Geosci. 10, 721–726 (2017).

    • Article
    • Google Scholar
  • 33.

    Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: an update. Chem. Geol. 232, 12–32 (2006).

    • Article
    • Google Scholar
  • 34.

    Och, L. M. & Shields-Zhou, G. A. The Neoproterozoic oxygenation event: environmental perturbations and biogeochemical cycling. Earth-Sci. Rev. 110, 26–57 (2012).

    • Article
    • Google Scholar
  • 35.

    Föllmi, K. B. et al. Phosphogenesis and organic-carbon preservation in the Miocene Monterey Formation at Naples Beach, California—the Monterey hypothesis revisited. Bull. Geol. Soc. Am. 117, 589–619 (2005).

    • Article
    • Google Scholar
  • 36.

    Andersen, M. B. et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth Planet. Sci. Lett. 400, 184–194 (2014).

    • Article
    • Google Scholar
  • 37.

    Barnes, C. E. & Cochran, J. K. Uranium geochemistry in estuarine sediments: controls on removal and release processes. Geochim. Cosmochim. Acta 57, 555–569 (1993).

    • Article
    • Google Scholar
  • 38.

    Kump, L. R. et al. Isotopic evidence for massive oxidation of organic matter following the Great Oxidation Event. Science 334, 1694–1696 (2011).

    • Article
    • Google Scholar
  • 39.

    Qu, Y., Črne, A. E., Lepland, A. & van Zuilen, M. A. Methanotrophy in a Paleoproterozoic oil field ecosystem, Zaonega Formation, Karelia, Russia. Geobiology 10, 467–478 (2012).

    • Article
    • Google Scholar
  • 40.

    Paiste, K. et al. Multiple sulphur isotope records tracking basinal and global processes in the 1.98 Ga Zaonega Formation, NW Russia. Chem. Geol. 499, 151–164 (2018).

    • Article
    • Google Scholar
  • 41.

    Asael, D. et al. Coupled molybdenum, iron and uranium stable isotopes as oceanic paleoredox proxies during the Paleoproterozoic Shunga Event. Chem. Geol. 362, 193–210 (2013).

    • Article
    • Google Scholar
  • 42.

    Asael, D., Rouxel, O., Poulton, S. W., Lyons, T. W. & Bekker, A. Molybdenum record from black shales indicates oscillating atmospheric oxygen levels in the early Paleoproterozoic. Am. J. Sci. 318, 275–299 (2018).

    • Article
    • Google Scholar
  • 43.

    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).

    • Article
    • Google Scholar
  • 44.

    Lepland, A. et al. Potential influence of sulphur bacteria on Palaeoproterozoic phosphogenesis. Nat. Geosci. 7, 20–24 (2014).

    • Article
    • Google Scholar
  • 45.

    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).

    • Article
    • Google Scholar
  • 46.

    Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556 (2018).

    • Article
    • Google Scholar
  • 47.

    Kasting, J. F. & Canfield, D. E. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O.) 93–104 (John Wiley & Sons, 2012).

  • 48.

    McLennan, S. M. Relationships between the trace element composition of sedimentary rocks and upper continental crust: trace element composition and upper continental crust. Geochem. Geophys. Geosyst. 2, 1021 (2001).

    • Article
    • Google Scholar
  • 49.

    Karhu, J. A. in Encyclopedia of Geochemistry (eds Marshall, C. P. & Fairbridge, R. W.) 67–73 (Kluwer Academic Publishers, 1999).

  • 50.

    Robbins, L. J. et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth-Sci. Rev. 163, 323–348 (2016).

    • Article
    • Google Scholar
  • 51.

    Melezhik, V. A., Fallick, A. E., Filippov, M. M. & Larsen, O. Karelian shungite—an indication of 2.0-Ga-old metamorphosed oil-shale and generation of petroleum: geology, lithology and geochemistry. Earth-Sci. Rev. 47, 1–40 (1999).

    • Article
    • Google Scholar
  • 52.

    Paiste, K. Reconstructing the Paleoproterozoic Sulfur Cycle: Insights from the Multiple Sulfur Isotope Record of the Zaonega Formation, Karelia, Russia. PhD thesis, Univ. Tromsø (2018).

  • 53.

    Siebert, C., Nägler, T. F. & Kramers, J. D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosyst. 2, 1032 (2001).

    • Article
    • Google Scholar
  • 54.

    Nägler, T. F. et al. Proposal for an international molybdenum isotope measurement standard and data representation. Geostand. Geoanal. Res. 38, 149–151 (2014).

    • Google Scholar
  • 55.

    Mänd, K. et al. Trace Metal Concentrations and Isotope Compositions from Drill Core OnZaP of the Zaonega Formation, NW-Russia (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.911670

  • 56.

    Mänd, K. et al. Trace Metal Concentrations and Isotope Compositions from Drill Core OPH of the Zaonega Formation, NW-Russia (PANGAEA, 2020); https://doi.org/10.1594/PANGAEA.911674


  • Source: Ecology - nature.com

    Native plants for greening Mediterranean agroecosystems

    Scientists quantify how wave power drives coastal erosion