in

Partitioning of diet between species and life history stages of sympatric and cryptic snappers (Lutjanidae) based on DNA metabarcoding

  • 1.

    Sale, P. F. Coexistence of coral reef fishes – a lottery for living space. Environ. Biol. Fishes 3, 85–102 (1978).

    • Article
    • Google Scholar
  • 2.

    Prochazka, K. Spatial and trophic partitioning in cryptic fish communities of shallow subtidal reefs in False Bay, South Africa. Environ. Biol. Fishes 51, 201–220 (1998).

    • Article
    • Google Scholar
  • 3.

    Longenecker, K. Devil in the details: High-resolution dietary analysis contradicts a basic assumption of reef-fish diversity models. Copeia 2007, 543–555 (2007).

    • Article
    • Google Scholar
  • 4.

    Nagelkerken, I., van der Velde, G., Wartenbergh, S. L. J., Nugues, M. M. & Pratchett, M. S. Cryptic dietary components reduce dietary overlap among sympatric butterflyfishes (Chaetodontidae). J. Fish Biol. 75, 1123–1143 (2009).

  • 5.

    Gause, G. F. The struggle for existance. (1934).

  • 6.

    Razgour, O. et al. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species. Ecol. Evol. 1, 556–570 (2011).

  • 7.

    Dahlgren, C. P. & Eggleston, D. B. Ecological Processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81, 2227–2240 (2000).

    • Article
    • Google Scholar
  • 8.

    Fry, G. et al. Reproductive dynamics and nursery habitat preferences of two commercially important Indo-Pacific red snappers Lutjanus erythropterus and L. malabaricus. Fish. Sci. 75, 145–158 (2009).

  • 9.

    Rooker, J. R. Feeding ecology of the schoolmaster snapper, Lutjanus apodus (Walbaum), from southwestern Puerto Rico. Bull. Mar. Sci. 56, 881–894 (1995).

    • Google Scholar
  • 10.

    Wells, R. J. D., Cowan, J. H. Jr & Fry, B. Feeding ecology of red snapper Lutjanus campechanus in the northern Gulf of Mexico. Mar. Ecol. Prog. Ser. 361, 213–225 (2008).

  • 11.

    Usmar, N. R. Ontogenetic diet shifts in snapper (Pagrus auratus: Sparidae) within a New Zealand estuary. New Zeal. J. Mar. Freshw. Res. 46, 31–46 (2012).

  • 12.

    Cocheret de la Morinière, E., Pollux, B. J. A., Nagelkerken, I., Velde, G. Van Der & Morinie, E. C. De. Diet shifts of Caribbean grunts (Haemulidae) and snappers (Lutjanidae) and the relation with nursery-to-coral reef migrations. Estuar. Coast. Shelf Sci. 57, 1079–1089 (2003).

  • 13.

    Szedlmayer, S. T. & Lee, J. D. Diet shifts of juvenile red snapper (Lutjanus campechanus) with changes in habitat and fish size. Fish. Bull. 102, 366–375 (2004).

    • Google Scholar
  • 14.

    Allen, G. R. Snappers of the world. FAO Species Catalogue, Vol.6. (FAO, 1985).

  • 15.

    Frédérich, B. & Santini, F. Macroevolutionary analysis of the tempo of diversification in snappers and fusiliers (Percomorpha: Lutjanidae). Belgian J. Zool. 147, 17–35 (2017).

    • Article
    • Google Scholar
  • 16.

    Blaber, S. J. M. et al. Shared stocks of snappers (Lutjanidae) in Australia and Indonesia: Integrating biology, population dynamics and socio-economics to examine management scenarios. Rev. Fish Biol. Fish. 15, 111–127 (2005).

    • Article
    • Google Scholar
  • 17.

    Crowder, L. & Norse, E. Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar. Policy 32, 772–778 (2008).

    • Article
    • Google Scholar
  • 18.

    Thrush, S. F. & Dayton, P. K. What can ecology contribute to ecosystem-based management? Ann. Rev. Mar. Sci. 2, 419–441 (2010).

    • Article
    • Google Scholar
  • 19.

    Leigh, G. M. & O’Neill, M. F. Gulf of Carpentaria finfish trawl fishery: maximum sustainable yield. (Agri-Science Queensland,Department of Agriculture and Fisheries, Queensland, 2016).

  • 20.

    Salini, J. P., Blaber, S. J. M. & Brewer, D. T. Diets of trawled tredatory fish of the Gulf of Carpentaria, Australia, with particular reference to predation on prawns. Aust. J. Mar. Freshw. Res. 45, 397–411 (1994).

    • Article
    • Google Scholar
  • 21.

    Newman, S. J. & Williams, D. M. B. Variation in reef associated assemblages of the Lutjanidae and Lethrinidae at different distances offshore in the central Great Barrier Reef. Environ. Biol. Fishes 46, 123–138 (1996).

    • Article
    • Google Scholar
  • 22.

    Brewer, D. T., Blaber, S. J. M. & Salini, J. P. Predation on penaeid prawns by fishes in Albatross Bay, Gulf of Carpentaria. Mar. Biol. 109, 231–240 (1991).

    • Article
    • Google Scholar
  • 23.

    Cox, E. F. Resource use by corallivorous butterflyfishes (Family Chaetodontidae) in Hawaii. Bull. Mar. Sci. 54, 535–545 (1994).

    • Google Scholar
  • 24.

    Pratchett, M. S. Dietary overlap among coral-feeding butterflyfishes (Chaetodontidae) at Lizard Island, northern Great Barrier Reef. Mar. Biol. 148, 373–382 (2005).

    • Article
    • Google Scholar
  • 25.

    Pompanon, F. et al. Who is eating what: diet assessment using next generation sequencing. Mol. Ecol. 21, 1931–1950 (2012).

  • 26.

    Deagle, B. E. et al. Studying seabird diet through genetic analysis of faeces: A case study on Macaroni Penguins (Eudyptes chrysolophus). PLoS One 2, e831 (2007).

  • 27.

    Siegenthaler, A., Wangensteen, O. S., Benvenuto, C., Campos, J. & Mariani, S. DNA metabarcoding unveils multiscale trophic variation in a widespread coastal opportunist. Mol. Ecol. 28, 232–249 (2019).

  • 28.

    Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).

  • 29.

    Sousa, L. L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystems. Environ. DNA 1, 199–214 (2019).

    • Google Scholar
  • 30.

    Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).

    • Article
    • Google Scholar
  • 31.

    Leray, M. et al. Dietary partitioning promotes the coexistence of planktivorous species on coral reefs. Mol. Ecol. 28, 2694–2710 (2019).

  • 32.

    Wakefield, C. B., Moran, M. J., Tapp, N. E. & Jackson, G. Catchability and selectivity of juvenile snapper (Pagrus auratus, Sparidae) and western butterfish (Pentapodus vitta, Nemipteridae) from prawn trawling in a large marine embayment in Western Australia. Fish. Res. 85, 37–48 (2007).

    • Article
    • Google Scholar
  • 33.

    Wakefield, C. B. et al. Performance of bycatch reduction devices varies for chondrichthyan, reptile, and cetacean mitigation in demersal fish trawls: Assimilating subsurface interactions and unaccounted mortality. ICES J. Mar. Sci. 74, 343–358 (2017).

    • Article
    • Google Scholar
  • 34.

    Meeker, D. N., Hutchinson, S. A., Ho, L. & Trede, N. S. Method for isolation of PCR-ready genomic DNA from zebrafish tissues. Biotechniques 43, 610–614 (2007).

  • 35.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 45, D37–D42 (2017).

  • 36.

    Nester, G. et al. Development and evaluation of fish eDNA metabarcoding assays facilitates the detection of cryptic seahorse taxa (family: Syngnathidae). Manuscript submitted for publication (2019).

  • 37.

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

  • 38.

    Berry, T. E. et al. Marine environmental DNA biomonitoring reveals seasonal patterns in biodiversity and identifies ecosystem responses to anomalous climatic events. PLoS Genet. 15, e1007943 (2019).

  • 39.

    Buschmann, T. DNABarcodes: An R package for the systematic construction of DNA sample tags. Bioinformatics 33, 920–922 (2017).

  • 40.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

  • 41.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

  • 42.

    Wangensteen, O. S. & Turon, X. Metabarcoding techniques for assessing biodiversity of marine animal forests. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A. & Orejas, C.) 455–473 (Springer International Publishing, 2017).

  • 43.

    Callahan, B. J., Mcmurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).

  • 44.

    Deagle, B. E., Thomas, A. C. & Mcinnes, J. C. Counting with DNA in metabarcoding studies: how should we convert sequence reads to dietary data? Mol. Ecol. 28, 391–406 (2019).

    • Article
    • Google Scholar
  • 45.

    Leray, M. & Knowlton, N. DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc. Natl. Acad. Sci. 112, 2076–2081 (2015).

  • 46.

    Deagle, B. E. & Tollit, D. J. Quantitative analysis of prey DNA in pinniped faeces: potential to estimate diet composition? Conserv. Genet. 8, 743–747 (2007).

  • 47.

    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).

  • 48.

    Piñol, J., Mir, G., Gomez-Polo, P. & Agustí, N. Universal and blocking primer mismatches limit the use of high-throughput DNA sequencing for the quantitative metabarcoding of arthropods. Mol. Ecol. Resour. 15, 819–830 (2015).

  • 49.

    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS One 10, 1–16 (2015).

  • 50.

    Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in marine communities: An approach to statistical analysis and interpretation, 3rd edition. (PRIMER-E: Plymouth, 2014).

  • 51.

    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525 (2003).

    • Article
    • Google Scholar
  • 52.

    RStudio Team. RStudio: Integrated Development for R. (2016).

  • 53.

    Wainwright, P. C. & Richard, B. A. Predicting patterns of prey use from morphology of fishes. Environ. Biol. Fishes 44, 97–113 (1995).

    • Article
    • Google Scholar
  • 54.

    Kwak, S. N., Klumpp, D. W. & Park, J. M. Feeding relationships among juveniles of abundant fish species inhabiting tropical seagrass beds in Cockle Bay, North Queensland, Australia. New Zeal. J. Mar. Freshw. Res. 49, 205–223 (2015).

  • 55.

    Pimentel, C. R. & Joyeux, J. C. Diet and food partitioning between juveniles of mutton Lutjanus analis, dog Lutjanus jocu and lane Lutjanus synagris snappers (Perciformes: Lutjanidae) in a mangrove-fringed estuarine environment. J. Fish Biol. 76, 2299–2317 (2010).

  • 56.

    Haak, C. R., Power, M., Cowles, G. W. & Danylchuk, A. J. Hydrodynamic and isotopic niche differentiation between juveniles of two sympatric cryptic bonefishes, Albula vulpes and Albula goreensis. Environ. Biol. Fishes 102, 129–145 (2019).

    • Article
    • Google Scholar
  • 57.

    Salini, J. P., Blaber, S. J. M. & Brewer, D. T. Diets of piscivorous fishes in a tropical Australian estuary, with special reference to predation on penaeid prawns. Mar. Biol. 105, 363–374 (1990).

    • Article
    • Google Scholar
  • 58.

    Deagle, B. E., Chiaradia, A., McInnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: Is what goes in what comes out? Conserv. Genet. 11, 2039–2048 (2010).

    • Article
    • Google Scholar
  • 59.

    Jarman, S. N. et al. Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS One 8, e82227 (2013).

  • 60.

    McInnes, J. C. et al. High occurrence of jellyfish predation by black-browed and Campbell albatross identified by DNA metabarcoding. Mol. Ecol. 26, 4831–4845 (2017).

  • 61.

    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples – A case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 1–11 (2008).

  • 62.

    Su, M., Liu, H., Liang, X., Gui, L. & Zhang, J. Dietary analysis of marine fish species: Enhancing the detection of prey-specific DNA sequences via high-throughput sequencing using blocking primers. Estuaries and Coasts 41, 560–571 (2017).

    • Article
    • Google Scholar
  • 63.

    Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W. & Jarman, S. N. Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: Which counts count? Mol. Ecol. Resour. 13, 620–633 (2013).

  • 64.

    Leray, M., Boehm, J. T., Mills, S. C. & Meyer, C. P. Moorea BIOCODE barcode library as a tool for understanding predator-prey interactions: Insights into the diet of common predatory coral reef fishes. Coral Reefs 31, 383–388 (2012).

  • 65.

    Sheppard, S. K. et al. Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators. Mol. Ecol. 14, 4461–4468 (2005).

  • 66.

    Pochon, X., Bott, N. J., Smith, K. F. & Wood, S. A. Evaluating detection limits of next-generation sequencing for the surveillance and monitoring of international marine pests. PLoS One 8, e73935 (2013).

  • 67.

    Peters, K. J. et al. Fine-scale diet of the Australian sea lion (Neophoca cinerea) using DNA-based analysis of faeces. Mar. Ecol. 36, 347–367 (2014).


  • Source: Ecology - nature.com

    Dance of the honeybee

    Temperature-dependent competitive advantages of an allelopathic alga over non-allelopathic alga are altered by pollutants and initial algal abundance levels