in

Passenger for millenniums: association between stenothermic microcrustacean and suctorian epibiont – the case of Eurytemora lacustris and Tokophyra sp

  • 1.

    Weissman, P., Lonsdale, D. J. & Yen, J. The effect of peritrich ciliates on the production of Acartia hudsonica in Long Island Sound. Limnol. Oceanogr. 38(3), 613–622 (1993).

    ADS  Article  Google Scholar 

  • 2.

    Morado, J. F. & Small, E. B. Ciliate parasites and related diseases of Crustacea: a review. Rev. Fish. Sci. Aquac. 3(4), 275–354 (1995).

    Article  Google Scholar 

  • 3.

    Wahl, M. Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24(6), 427–438 (2008).

    Article  Google Scholar 

  • 4.

    Evans, M. S., Sicko-Goad, L. M. & Omair, M. Seasonal occurrence of Tokophrya quadripartita (Suctoria) as epibionts on adult Limnocalanus macrurus (Copepoda: Calanoida) in southeastern Lake Michigan. Trans. Am. Microsc. Soc. 98(1), 102–109 (1979).

    Article  Google Scholar 

  • 5.

    Willey, R. L., Willey, R. B. & Threlkeld, S. T. Planktivore effects on zooplankton epibiont communities: epibiont pigmentation effects. Limnol. Oceanogr. 38(8), 1818–1822 (1993).

    ADS  Article  Google Scholar 

  • 6.

    Souissi, A., Souissi, S. & Hwang, J. S. The effect of epibiont ciliates on the behavior and mating success of the copepod Eurytemora affinis. J. Exp. Mar. Biol. Ecol. 445, 38–43 (2013).

    Article  Google Scholar 

  • 7.

    Xu, Z., & Burns, C. W. Effects of the epizoic ciliate, Epistylis daphniae, on growth, reproduction and mortality of Boeckella triarticulata (Thomson)(Copepoda: Calanoida). Hydrobiologia 209(3), 183-189 (1991).

  • 8.

    Bickel, S. L., Tang, K. W. & Grossart, H. P. Ciliate epibionts associated with crustacean zooplankton in German lakes: distribution, motility, and bacterivory. Front. Microbiol. 3, 243 (2012).

    Article  Google Scholar 

  • 9.

    Chatterjee, T., Kotov, A. A. & Fernández-Leborans, G. A checklist of epibiotic ciliates (Peritrichia and Suctoria) on the cladoceran crustaceans. Biologia 68(3), 439–447 (2013).

    Article  Google Scholar 

  • 10.

    Evans, M. S., Sell, D. W. & Beeton, A. M. Tokophrya quadripartita and Tokophrya sp.(Suctoria) associations with crustacean zooplankton in the Great Lakes region. Trans. Am. Microsc. Soc. 100(4), 384–391 (1981).

    Article  Google Scholar 

  • 11.

    Gregori, M., Fernández‐Leborans, G., Roura, Á., González, Á. F. & Pascual, S. Description of a new epibiotic relationship (Suctorian–Copepoda) in NE Atlantic waters: from morphological to phylogenetic analyses. Acta Zool. 97(2), 165–176 (2016).

    Article  Google Scholar 

  • 12.

    Carman, K. R. & Dobbs, F. C. Epibiotic microorganisms on copepods and other marine crustaceans. Microsc. Res. Tech. 37(2), 116–135 (1997).

    CAS  Article  Google Scholar 

  • 13.

    Boxshall, G. A. & Defaye, D. Global diversity of copepods (Crustacea: Copepoda) in freshwater. Hydrobiologia 595, 195–207 (2008).

    Article  Google Scholar 

  • 14.

    Lee, C. E. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17(8), 386–391 (2002).

    Article  Google Scholar 

  • 15.

    Lee, C. E., Remfert, J. L. & Gelembiuk, G. W. Evolution of physiological tolerance and performance during freshwater invasions. Integr. Comp. Biol. 43(3), 439–449 (2003).

    Article  Google Scholar 

  • 16.

    Kasprzak, P. et al. Habitat characteristics of Eurytemora lacustris (POPPE, 1887)(Copepoda, Calanoida): the role of lake depth, temperature, oxygen concentration and light intensity. Int. Rev. Hydrobiol. 90(3), 292–309 (2005).

    Article  Google Scholar 

  • 17.

    Maier, G., Speth, B., Wolfgang, A. R. P., Bahnwart, M. & Kasprzak, P. New records of the rare glacial relict Eurytemora lacustris (Poppe 1887)(Copepoda; Calanoida) in atypical lake habitats of northern Germany. J. Limnol. 70(1), 145–148 (2011).

    Article  Google Scholar 

  • 18.

    Spikkeland, I., Kinsten, B., Kjellberg, G., Nilssen, J. P. & Väinölä, R. The aquatic glacial relict fauna of Norway–an update of distribution and conservation status. Fauna Norv. 36, 51–65 (2016).

    Article  Google Scholar 

  • 19.

    Karpowicz, M. & Kalinowska, K. Vertical distribution of the relic species Eurytemora lacustris (Copepoda, Calanoida) in stratified mesotrophic lakes. Biologia 73(12), 1197–1204 (2018).

    CAS  Article  Google Scholar 

  • 20.

    Sukhikh, N. et al. Life in sympatry: coexistence of native Eurytemora affinis and invasive Eurytemora carolleeae in the Gulf of Finland (Baltic Sea). Oceanologia 61(2), 227–238 (2019).

    Article  Google Scholar 

  • 21.

    Sługocki, Ł., Rymaszewska, A. & Kirczuk, L. Insights into the morphology and molecular characterisation of glacial relict Eurytemora lacustris (Poppe, 1887)(Crustacea, Copepoda, Calanoida, Temoridae). ZooKeys 864, 15 (2019).

  • 22.

    Błędzki, L. A., & Rybak, J. I. Freshwater crustacean zooplankton of Europe 918 pp. (Springer, 2016)

  • 23.

    Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71(2), 491–499 (1988).

    CAS  Article  Google Scholar 

  • 24.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).

    CAS  Article  Google Scholar 

  • 25.

    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17(4), 540–552 (2000).

    CAS  Article  Google Scholar 

  • 26.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences 17(2), 57–86 (1986).

    MathSciNet  MATH  Google Scholar 

  • 27.

    Darriba, D. et al. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 9, 772 (2012).

    CAS  Article  Google Scholar 

  • 28.

    Vanderploeg, H. A., Cavaletto, J. F., Liebig, J. R. & Gardner, W. S. Limnocalanus macrurus (Copepoda: Calanoida) retains a marine arctic lipid and life cycle strategy in Lake Michigan. J. Plankton Res. 20(8), 1581–1597 (1998).

    CAS  Article  Google Scholar 

  • 29.

    Ólafsdóttir, S. H. & Svavarsson, J. Ciliate (Protozoa) epibionts of deep-water asellote isopods (Crustacea): pattern and diversity. J. Crustac. Biol. 22(3), 607–618 (2002).

    Article  Google Scholar 

  • 30.

    Arndt, C. E., Fernandez-Leborans, G., Seuthe, L., Berge, J. & Gulliksen, B. Ciliated epibionts on the Arctic sympagic amphipod Gammarus wilkitzkii as indicators for sympago–benthic coupling. Mar. Biol. 147(3), 643–652 (2005).

    Article  Google Scholar 

  • 31.

    Karpowicz, M., Ejsmont-Karabin, J., Kozłowska, J., Feniova, I. & Dzialowski, A. R. Zooplankton Community Responses to Oxygen Stress. Water 12, 706 (2020).

    Article  Google Scholar 


  • Source: Ecology - nature.com

    A layered approach to safety

    Tiny sand grains trigger massive glacial surges