in

Peppermint essential oil inhibits Drosophila suzukii emergence but reduces Pachycrepoideus vindemmiae parasitism rates

  • 1.

    Matsumura, S. Nihon konchū daizukan = 6000 illustrated insects of Japan-Empire. (Tōkyō: Tōkō Shoin (1931).

  • 2.

    Atallah, J., Teixeira, L., Salazar, R., Zaragoza, G. & Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 281, 17181 (2014).

    Google Scholar 

  • 3.

    Anfora, G., Cini, A. & Ioriatti, C. A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull. Insectology 65, 149–160 (2012).

    Google Scholar 

  • 4.

    Walsh, D. B. et al. Drosophila suzukii (Diptera: Drosophilidae): Invasive pest of ripening soft fruit expanding its geographic range and damage potential. J. Integr. Pest Manag 2, G1–G7 (2011).

    Google Scholar 

  • 5.

    Bolda, M. P., Goodhue, R. E. & Zalom, F. G. Spotted wing drosophila: potential economic impact of a newly established pest. Agric. Resour. Econ. Updat. Univ. California. Giannini Found 13, 5–8 (2010).

    Google Scholar 

  • 6.

    Goodhue, R. E., Bolda, M., Farnsworth, D., Williams, J. C. & Zalom, F. G. Spotted wing drosophila infestation of California strawberries and raspberries: Economic analysis of potential revenue losses and control costs. Pest Manag. Sci. 67, 1396–1402 (2011).

    CAS  PubMed  Google Scholar 

  • 7.

    Bruck, D. J. et al. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag. Sci. 67, 1375–1385 (2011).

    CAS  PubMed  Google Scholar 

  • 8.

    Van Timmeren, S., Sial, A. A., Lanka, S. K., Spaulding, N. R. & Isaacs, R. Development of a rapid assessment method for detecting insecticide resistance in spotted wing Drosophila (Drosophila suzukii Matsumura). Pest Manag. Sci.; https://doi.org/10.1002/ps.5341 (2019).

    CAS  PubMed  Google Scholar 

  • 9.

    Gress, B. E. & Zalom, F. G. Identification and risk assessment of spinosad resistance in a California population of Drosophila suzukii. Pest Manag. Sci. 75, 1270–1276 (2019).

    CAS  PubMed  Google Scholar 

  • 10.

    Keesey, I. W., Knaden, M. & Hansson, B. S. Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. J. Chem. Ecol. 41, 121–128 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Beers, E. H., Van Steenwyk, R. A., Shearer, P. W., Coates, W. W. & Grant, J. A. Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag. Sci. 67, 1386–1395 (2011).

    CAS  PubMed  Google Scholar 

  • 12.

    Cha, D. H., Adams, T., Rogg, H. & Landolt, P. J. Identification and field evaluation of fermentation volatiles from wine and vinegar that mediate attraction of spotted wing drosophila, Drosophila suzukii. J. Chem. Ecol. 38, 1419–1431 (2012).

    CAS  PubMed  Google Scholar 

  • 13.

    Cha, D. H. et al. Comparison of a synthetic chemical lure and standard fermented baits for trapping Drosophila suzukii (Diptera: Drosophilidae). Environ. Entomol. 42, 1052–1060 (2013).

    PubMed  Google Scholar 

  • 14.

    Abraham, J. et al. Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ. Entomol. 44, 356–367 (2015).

    CAS  PubMed  Google Scholar 

  • 15.

    Wallingford, A. K. et al. Field evaluation of an oviposition deterrent for management of spotted-wing drosophila, Drosophila suzukii, and potential nontarget effects. J. Econ. Entomol. 109, 1779–1784 (2016).

    CAS  PubMed  Google Scholar 

  • 16.

    Wallingford, A. K., Hesler, S. P., Cha, D. H. & Loeb, G. M. Behavioral response of spotted-wing drosophila, Drosophila suzukii Matsumura, to aversive odors and a potential oviposition deterrent in the field. Pest Manag. Sci. 72, 701–706 (2016).

    CAS  PubMed  Google Scholar 

  • 17.

    Park, C. G., Jang, M., Shin, E. & Kim, J. Myrtaceae plant essential oils and their β-triketone components as insecticides against Drosophila suzukii. Molecules 22 (2017).

  • 18.

    Wallingford, A. K., Cha, D. H. & Loeb, G. M. Evaluating a push–pull strategy for management of Drosophila suzukii Matsumura in red raspberry. Pest Manag. Sci. 74, 120–125 (2018).

    CAS  PubMed  Google Scholar 

  • 19.

    Renkema, J. M., Wright, D., Buitenhuis, R. & Hallett, R. H. Plant essential oils and potassium metabisulfite as repellents for Drosophila suzukii (Diptera: Drosophilidae). Sci. Rep. 6, 21432 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Renkema, J. M., Buitenhuis, R. & Hallett, R. H. Reduced Drosophila suzukii infestation in berries using deterrent compounds and laminate polymer flakes. Insects 8, 117 (2017).

    PubMed Central  Google Scholar 

  • 21.

    Emiljanowicz, L. M., Ryan, G. D., Langille, A. & Newman, J. Development, reproductive output and population growth of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae) on Artificial Diet. J. Econ. Entomol. 107, 1392–1398 (2014).

    PubMed  Google Scholar 

  • 22.

    Kinjo, H., Kunimi, Y. & Nakai, M. Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Appl. Entomol. Zool. 49, 297–304 (2014).

    Google Scholar 

  • 23.

    Tochen, S. et al. Humidity affects populations of Drosophila suzukii (Diptera: Drosophilidae) in blueberry. J. Appl. Entomol. 140, 47–57 (2016).

    Google Scholar 

  • 24.

    Diepenbrock, L. & Burrack, H. J. Variation of within-crop microhabitat use by Drosophila suzukii (Diptera: Drosophilidae) in blackberry. J. Appl. Entomol. 141, 1–7 (2016).

    Google Scholar 

  • 25.

    Wise, J. C., Vanderpoppen, R., Vandervoort, C., O’Donnell, C. & Isaacs, R. Curative activity contributes to control of spotted-wing drosophila (Diptera: Drosophilidae) and blueberry maggot (Diptera: Tephritidae) in highbush blueberry. Can. Entomol. 147, 109–117 (2015).

    Google Scholar 

  • 26.

    Woltz, J. M., Donahue, K. M., Bruck, D. J. & Lee, J. C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J. Appl. Entomol. 139, 759–770 (2015).

    Google Scholar 

  • 27.

    Woltz, J. M. & Lee, J. C. Pupation behavior and larval and pupal biocontrol of Drosophila suzukii in the field. Biol. Control 110, 62–69 (2017).

    Google Scholar 

  • 28.

    Sokolowski, M. B., Kent, C. & Wong, J. Drosophila larval foraging behaviour: developmental stages. Anim. Behav. 32, 645–651 (1984).

    Google Scholar 

  • 29.

    Gabarra, R., Riudavets, J., Rodríguez, G. A., Pujade-Villar, J. & Arnó, J. Prospects for the biological control of Drosophila suzukii. BioControl 60, 331–339 (2015).

    Google Scholar 

  • 30.

    Arnó, J., Riudavets, J. & Gabarra, R. Survey of host plants and natural enemies of Drosophila suzukii in an area of strawberry production in Catalonia (northeast Spain). Integr. Control Prot. Crop. Mediterr. Clim. (2012).

  • 31.

    Chabert, S., Allemand, R., Poyet, M., Eslin, P. & Gibert, P. Ability of European parasitoids (Hymenoptera) to control a new invasive Asiatic pest, Drosophila suzukii. Biol. Control 63, 40–47 (2012).

    Google Scholar 

  • 32.

    Wang, X. G. & Messing, R. H. Fitness consequences of body-size-dependent host species selection in a generalist ectoparasitoid. Behav. Ecol. Sociobiol. 56, 513–522 (2004).

    Google Scholar 

  • 33.

    Thistlewood, H. M. A., Gibson, G. A. P., Gillespie, D. R. & Fitzpatrick, S. M. Drosophila suzukii (Matsumura), Spotted Wing Drosophila (Diptera: Drosophilidae). in Biological Control Programs in Canada 2001-2012 (eds. Mason, P. G. & Gillespie, D. R.) 152–155 (CABI Publishing (2013).

  • 34.

    Rossi Stacconi, M. V. et al. First field records of Pachycrepoideus vindemiae as a parasitoid of Drosophila suzukii in European and Oregon small fruit production areas. Entomologia e3; https://doi.org/10.4081/entomologia.2013.e3 (2013).

  • 35.

    Arnó, J., Solà, M., Riudavets, J. & Gabarra, R. Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest Sci. (2004). 89, 713–723 (2016).

    Google Scholar 

  • 36.

    Pelton, E. et al. Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. J. Pest Sci. (2004). 89, 725–733 (2016).

    Google Scholar 

  • 37.

    Daane, K. M. et al. First exploration of parasitoids of Drosophila suzukii in South Korea as potential classical biological agents. J. Pest Sci. (2004). 89, 823–835 (2016).

    Google Scholar 

  • 38.

    Lee, J. C. et al. Biological control of spotted-wing drosophila (Diptera: Drosophilidae)—current and pending tactics. J. Integr. Pest Manag 10, 13 (2019).

    Google Scholar 

  • 39.

    Schlesener, D. C. H. et al. Insecticide toxicity to Drosophila suzukii (Diptera: Drosophilidae) parasitoids: Trichopria anastrephae (Hymenoptera: Diapriidae) and Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae). J. Econ. Entomol 112, 1197–1206 (2019).

    CAS  PubMed  Google Scholar 

  • 40.

    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).

    Google Scholar 

  • 41.

    Crawley, M. J. The R Book. Jon Wiley & Sons Ltd. (2007).

  • 42.

    R Core Team. R: A Language and Environment for Statistical Computing. (2014).

  • 43.

    Rendon, D. & Walton, V. M. Drip and overhead sprinkler irrigation in blueberry as cultural control for Drosophila suzukii (Diptera: Drosophilidae) in Northwestern United States. J. Econ. Entomol 112, 745–752 (2019).

    PubMed  Google Scholar 

  • 44.

    Ukeh, D. A. & Umoetok, S. B. A. Repellent effects of five monoterpenoid odours against Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.) in Calabar, Nigeria. Crop Prot. 30, 1351–1355 (2011).

    CAS  Google Scholar 

  • 45.

    Konstantopoulou, I., Vassilopooulou, L., Mavragani-Tsipidou, P. & Scouras, Z. G. Insecticidal effects of essential oils. A study of the effects of essential oils extracted from eleven Greek aromatic plants on Drosophila auraria. Experientia 48, 616–619 (1992).

    CAS  PubMed  Google Scholar 

  • 46.

    Renkema, J. M. & Devkota, S. Pupation depth of spotted wing drosophila (Drosophila suzukii) and effects of field sanitation in Florida strawberries. Acta Hortic. 1156, 849–855 (2017).

    Google Scholar 

  • 47.

    Yang, F. Predictions and practices for reducing heat damage in northern highbush blueberry (Vaccinium corymbosum L.). Oregon State University, Corvallis, OR (2018).

  • 48.

    Bryla, D. R., Yorgey, B. & Shireman, A. D. Irrigation management effects on yield and fruit quality of highbush blueberry. HortScience 45, S49–S49 (2010).

    Google Scholar 

  • 49.

    Bryla, D. R., Gartung, J. L. & Strik, B. C. Evaluation of irrigation methods for highbush blueberry: growth and water requirements of young plants. HortScience. 46, 95–101 (2011).

    Google Scholar 

  • 50.

    Bryla, D. R. & Linderman, R. G. Implications of irrigation method and amount of water application on Phytophthora and Pythium infection and severity of root rot in highbush blueberry. HortScience 42, 1463–1467 (2007).

    Google Scholar 

  • 51.

    Yeo, J. R., Weiland, J. E., Sullivan, D. M. & Bryla, D. R. Nonchemical, cultural management strategies to suppress Phytophthora root rot in northern highbush blueberry. HortScience 52, 725–731 (2017).

    CAS  Google Scholar 

  • 52.

    Da Silva, C. S. B., Price, B. E. & Walton, V. M. Water-deprived parasitic wasps (Pachycrepoideus vindemmiae) kill more pupae of a pest (Drosophila suzukii) as a water-intake strategy. Sci. Rep 9, 3592 (2019).

    ADS  Google Scholar 

  • 53.

    Da Silva, C. S. B., Price, B. E., Soohoo-Hui, A. & Walton, V. M. Factors affecting the biology of Pachycrepoideus vindemmiae (Hymenoptera: Pteromalidae), a parasitoid of spotted-wing drosophila (Drosophila suzukii). PLoS One 14, e0218301; 0.1371/journal.pone.0218301 (2019).

  • 54.

    Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2006).

    Google Scholar 

  • 55.

    Cossentine, J. E. & Ayyanath, M. M. Limited protection of the parasitoid Pachycrepoideus vindemiae from Drosophila suzukii host-directed spinosad suppression. Entomol. Exp. Appl. 164, 78–86 (2017).

    Google Scholar 

  • 56.

    Scott, J. G., Geden, C. J., Rutz, D. A. & Liu, N. N. Comparative toxicity of seven insecticides to immature stages of Musca domestica (Diptera: Muscidae) and two of its important biological control agents, Muscidifurax raptor and Spalangia cameroni (Hymenoptera: Pteromalidae). J. Econ. Entomol. 84, 776–779 (1991).

    CAS  PubMed  Google Scholar 

  • 57.

    Longley, M. A review of pesticide effects upon immature aphid parasitoids within mummified hosts. Int. J. Pest Manag. 45, 139–145 (1999).

    CAS  Google Scholar 

  • 58.

    Mgocheki, N. & Addison, P. The sublethal effects of a systemic insecticide on the vine mealybug parasitoids Anagyrus sp. near pseudococci (Girault) and Coccidoxenoides perminutus (Timberlake) (Hymenoptera: Encyrtidae). South African. J. Enol. Vitic. 36, 175–179 (2016).

    Google Scholar 

  • 59.

    Ohta, I. & Takeda, M. Acute toxicities of 42 pesticides used for green peppers to an aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae), in adult and mummy stages. Appl. Entomol. Zool. 50, 207–212 (2015).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Structural and functional shifts of soil prokaryotic community due to Eucalyptus plantation and rotation phase

    Peatland drainage in Southeast Asia adds to climate change