in

Performance of hybrids between abiotic stress-tolerant transgenic rice and its weedy relatives under water-stressed conditions

  • 1.

    Warwick, S. I., Beckie, H. J. & Hall, L. M. Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann. N. Y. Acad. Sci. 1168, 72–99 (2009).

    ADS  PubMed  Google Scholar 

  • 2.

    Warwick, S. I., Beckie, H. J. & Small, E. Transgenic crops: new weed problems for Canada? Phytoprotection 80, 71–84 (1999).

    Google Scholar 

  • 3.

    Snow, A. A. Transgenic crops – why gene flow matters. Nature Biotechnology 20, 542 (2002).

    CAS  PubMed  Google Scholar 

  • 4.

    Stewart, C. N. Jr, Halfhill, M. D. & Warwick, S. I. Transgene introgression from genetically modified crops to their wild relatives. Nat. Rev. Genet. 4, 806–817 (2003).

    CAS  PubMed  Google Scholar 

  • 5.

    Pilson, D. & Prendeville, H. R. Ecological effects of transgenic crops and the escape of transgenes into wild populations. Ann. Rev. Ecol. Evol. Syst. 35, 149–174 (2004).

    Google Scholar 

  • 6.

    Nam, K. H. et al. Gene flow from transgenic PPO-inhibiting herbicide-resistant rice to weedy rice, and agronomic performance by their hybrids. J. Plant Biol. 62, 286–296 (2019).

    CAS  Google Scholar 

  • 7.

    Halfhill, M. D., Millwood, R. J., Raymer, P. L. & Stewart, C. N. Jr Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ. Biosafety Res. 1, 19–28 (2002).

    PubMed  Google Scholar 

  • 8.

    Zhang, N., Linscombe, S. & Oard, J. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica 130, 35–45 (2003).

    CAS  Google Scholar 

  • 9.

    Chun, Y. J. et al. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta 233, 807–815 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 10.

    Reddy, A. R., Chaitanya, K. V. & Vivekanandan, M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202 (2004).

    CAS  Google Scholar 

  • 11.

    Seki, M., Umezawa, T., Urano, K. & Shinozaki, K. Regulatory metabolic networks in drought stress responses. Curr. Opin. Plant Biol. 10, 296–302 (2007).

    CAS  PubMed  Google Scholar 

  • 12.

    Yang, S., Vanderbeld, B., Wan, J. & Huang, Y. Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops. Mol. Plant 3, 469–490 (2010).

    CAS  PubMed  Google Scholar 

  • 13.

    Valliyodan, B. & Nguyen, H. T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9, 189–195 (2006).

    CAS  PubMed  Google Scholar 

  • 14.

    Shinozaki, K. & Yamaguchi-Shinozaki, K. Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221–227 (2007).

    CAS  PubMed  Google Scholar 

  • 15.

    Abdeen, A., Schnell, J. & Miki, B. Transcriptome analysis reveals absence of unintended effects in drought-tolerant transgenic plants overexpressing the transcription factor ABF3. BMC Genomics 11, 69 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K. & Shinozaki, K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287–291 (1999).

    CAS  PubMed  Google Scholar 

  • 17.

    Zhang, G. et al. Overexpression of the soybean GmEFR3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 60, 3781–3796 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Kim, H. B. & Choi, S. B. Cytochrome P450 gene for increasing seed size or water stress resistance of plant. US Patent 8153862 B2 (2012).

  • 19.

    Schuler, M. A. Plant cytochrome P450 monooxygenases. Crit. Rev. Plant Sci. 15, 235–284 (1996).

    CAS  Google Scholar 

  • 20.

    Umemoto, N. et al. Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol. 171, 2458–2467 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Persans, M. W., Wang, J. & Schuler, M. A. Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol. 125, 1126–1138 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Werck-Reichhart, D., Hehn, A. & Didierjean, L. Cytochromes P450 for engineering herbicide tolerance. Trends Plant Sci. 5, 116–123 (2000).

    CAS  PubMed  Google Scholar 

  • 23.

    Xu, J., Wang, X. Y. & Guo, W. Z. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 14, 1673–1686 (2015).

    CAS  Google Scholar 

  • 24.

    Nam, K. H. et al. Drought stress-induced compositional changes in tolerant transgenic rice and its wild type. Food Chem. 153, 145–150 (2014).

    CAS  PubMed  Google Scholar 

  • 25.

    Nam, K. H. et al. Metabolomic changes in grains of well-watered and drought-stressed transgenic rice. J. Sci. Food Agric. 96, 807–814 (2016).

    CAS  PubMed  Google Scholar 

  • 26.

    Azmi, M., Azlan, S., Yim, K. M., George, T. V. & Chew, S. E. Control of weedy rice in direct-seeded rice using the Clearfield production system in Malaysia. Pak. J. Weed Sci. Res. 18, 49–53 (2012).

    Google Scholar 

  • 27.

    Pantone, D. J. & Baker, J. B. Reciprocal yield analysis of red rice (Oryza sativa) competition in cultivated rice. Weed Sci. 39, 42–47 (1991).

    Google Scholar 

  • 28.

    Suh, H. S., Pak, S. Z. & Heu, M. H. Collection and evaluation of Korean red rices. I. Regional distribution and seed characteristics. Korean J. Crop Sci. 37, 425–430 (1992).

    Google Scholar 

  • 29.

    Chen, L. J., Lee, D. S., Song, Z. P., Suh, H. S. & Lu, B. R. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann. Bot. 93, 67–73 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Zuo, J., Zhang, L., Song, X., Dai, W. & Qiang, S. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes. Pest Manag. Sci. 67, 677–690 (2011).

    CAS  PubMed  Google Scholar 

  • 31.

    Sun, G., Dai, W., Cui, R., Qiang, S. & Song, X. Gene flow from glufosinate–resistant transgenic hybrid rice Xiang 125S/Bar68-1 to weedy rice and cultivated rice under different experimental designs. Euphytica 204, 211–227 (2015).

    CAS  Google Scholar 

  • 32.

    Vergara, B.S. & Chang, T.T. The Flowering Response of the Rice Plant to Photoperiod. A Review of the Literature. 4th ed. International Rice Research Institute, Los Baños (1985).

  • 33.

    Arriola, P. E. & Ellstrand, N. C. Fitness of interspecific hybrids in the genus Sorghum: Persistence of crop genes in wild populations. Ecol. Appl. 7, 512–518 (1997).

    Google Scholar 

  • 34.

    Snow, A. A. et al. A Bt Transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol. Appl. 13, 279–286 (2003).

    Google Scholar 

  • 35.

    Mercer, K. L., Andow, D. A., Wyse, D. L. & Shaw, R. G. Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. Ecol. Lett. 10, 383–393 (2007).

    PubMed  Google Scholar 

  • 36.

    Lu, B. R. & Yang, C. Gene flow from genetically modified rice to its wild relatives: Assessing potential ecological consequences. Biotechnol. Adv. 27, 1083–1091 (2009).

    CAS  PubMed  Google Scholar 

  • 37.

    Song, Z. P., Lu, B. R., Wang, B. & Chen, K. Fitness estimation through performance comparison of F1 hybrids with their parental species Oryza rufipogon and O. sativa. Ann. Bot. 93, 311–316 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Cao, Q. J., Xia, H., Yang, X. & Lu, B. R. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: implication for environmental biosafety assessment. J. Integr. Plant Biol. 51, 1138–1148 (2009).

    CAS  PubMed  Google Scholar 

  • 39.

    Langevin, S. A., Clay, K. & Grace, J. B. The incidence and effects of hybridization between cultivated rice and its related weed rice (Oryza sativa L.). Evolution 44, 1000–1008 (1990).

    PubMed  Google Scholar 

  • 40.

    Gressel, J. et al. Overexpression of epsps transgene in weedy rice: insufficient evidence to support speculations about biosafety. New Phytol. 202, 360–362 (2014).

    CAS  PubMed  Google Scholar 

  • 41.

    Grunewald, W. & Bury, J. Comment on ‘A novel 5-enolpyruvoylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide’ by Wang et al. (2014). New Phytol. 202, 367–369 (2014).

    CAS  PubMed  Google Scholar 

  • 42.

    Manson, P., Braun, L., Warwick, S. I., Zhu, B. & Stewart, C. N. Jr Transgenic Bt-producing Brassica napus: Plutella xylostella selection pressure and fitness of weedy relatives. Environ. Biosafety Res. 2, 263–276 (2003).

    Google Scholar 

  • 43.

    Yang, X. et al. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) transgene alters phenology and fitness of crop-wild hybrid offspring. Sci. Rep. 7, 6834 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Sagers, C. L. et al. Benefits of transgenic insect resistance in Brassica hybrids under selection. Agronomy 5, 21–34 (2015).

    CAS  Google Scholar 

  • 45.

    Orians, C. M., Bolnick, D. I., Roche, B. M., Fritz, R. S. & Floyd, T. Water availability alters the relative performance of Salix sericea, Salix eriocephala, and their F1 hybrids. Can. J. Bot. 77, 514–522 (1999).

    Google Scholar 

  • 46.

    Su, J. & Wu, R. Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 166, 941–948 (2004).

    CAS  Google Scholar 

  • 47.

    Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    CAS  Google Scholar 

  • 48.

    O’Toole, J. C. & Moya, T. B. Genotypic variation in maintenance of leaf water potential in rice. Crop Sci. 18, 873–876 (1978).

    Google Scholar 

  • 49.

    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    CAS  PubMed  Google Scholar 

  • 50.

    Zaiontz, C. Real Statistics Using Excel. http://www.real-statistics.com (2019).


  • Source: Ecology - nature.com

    Unlocking the secrets of a plastic-eater

    Range-wide genetic structure in the thorn-tailed rayadito suggests limited gene flow towards peripheral populations