in

Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene

  • 1.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

  • 2.

    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).

  • 3.

    Fine, P. V. A. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).

    • Article
    • Google Scholar
  • 4.

    Fjeldså, J. & Lovett, J. C. Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiv. Conserv. 6, 325–346 (1997).

    • Article
    • Google Scholar
  • 5.

    Haffer, J. Speciation in amazonian forest birds. Science 165, 131–137 (1969).

  • 6.

    Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).

    • Article
    • Google Scholar
  • 7.

    Jansson, R. Global patterns in endemism explained by past climatic change. Proc. R. Soc. B 270, 583–590 (2003).

    • Article
    • Google Scholar
  • 8.

    Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

  • 9.

    Harrison, S. & Noss, R. Endemism hotspots are linked to stable climatic refugia. Ann. Bot. 119, 207–214 (2017).

    • Article
    • Google Scholar
  • 10.

    Araújo, M. B. et al. Quaternary climate changes explain diversity among reptiles and amphibians. Ecography 31, 8–15 (2008).

    • Article
    • Google Scholar
  • 11.

    Dalsgaard, B. et al. Specialization in plant-hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS ONE 6, e25891 (2011).

  • 12.

    Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).

  • 13.

    Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N. & Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 11, 609–623 (2008).

    • Article
    • Google Scholar
  • 14.

    Tzedakis, P. C., Lawson, I. T., Frogley, M. R., Hewitt, G. M. & Preece, R. C. Buffered tree population changes in a Quaternary refugium: evolutionary implications. Science 297, 2044–2047 (2002).

  • 15.

    Fordham, D. A., Saltre, F., Brown, S. C., Mellin, C. & Wigley, T. M. L. Why decadal to century timescale palaeoclimate data are needed to explain present-day patterns of biological diversity and change. Glob. Change Biol. 24, 1371–1381 (2018).

    • Article
    • Google Scholar
  • 16.

    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).

  • 17.

    Fordham, D. A., Brown, S. C., Wigley, T. M. L. & Rahbek, C. Cradles of diversity are unlikely relics of regional climate stability. Curr. Biol. 29, R356–R357 (2019).

  • 18.

    Wallace, A. R. Tropical Nature, and Other Essays (Macmillan and Company, 1878).

  • 19.

    Mittermeier, R. A., Turner, W. R., Larsen, F. W., Brooks, T. M. & Gascon, C. in Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas (eds Zachos, F. E. & Habel, J. C.) 3–22 (Springer, 2011).

  • 20.

    Connell, J. H. Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310 (1978).

  • 21.

    Johnson, D. J., Condit, R., Hubbell, S. P. & Comita, L. S. Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proc. R. Soc. B 284, 20172210 (2017).

    • Article
    • Google Scholar
  • 22.

    Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

  • 23.

    Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288 (2018).

  • 24.

    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65–65 (2003).

  • 25.

    Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Clim. Change 3, 165–170 (2012).

    • Google Scholar
  • 26.

    Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

  • 27.

    Sniderman, J. M. K. et al. Southern Hemisphere subtropical drying as a transient response to warming. Nat. Clim. Change 9, 232–236 (2019).

    • Article
    • Google Scholar
  • 28.

    Lohman, D. J. et al. Biogeography of the Indo-Australian archipelago. Annu. Rev. Ecol. Evol. Syst. 42, 205–226 (2011).

    • Article
    • Google Scholar
  • 29.

    Pellissier, L. et al. Quaternary coral reef refugia preserved fish diversity. Science 344, 1016–1019 (2014).

  • 30.

    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

  • 31.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5–31 (2011).

    • Article
    • Google Scholar
  • 32.

    Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bolling–Allerod warming. Science 325, 310–314 (2009).

  • 33.

    Zhang, X. et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim. Change 2, 851–870 (2011).

    • Article
    • Google Scholar
  • 34.

    Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2017).

  • 35.

    Ver Hoef, J. M. & Boveng, P. L. Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Ecology 88, 2766–2772 (2007).

    • Article
    • Google Scholar
  • 36.

    Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).

  • 37.

    Holt, B. G. et al. An update of wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

  • 38.

    Jetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries