in

Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts

  • 1.

    Werck-Reichhart, D. & Feyereisen, R. Cytochromes P450: a success story. Genome Biol. 1, REVIEWS3003 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Nelson, D. R. A world of cytochrome P450s. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120430 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 3.

    Payne, A. H. Hormonal regulation of cytochrome P450 enzymes, cholesterol side-chain cleavage and 17 alpha-hydroxylase/C17-20 lyase in Leydig cells. Biol. Reprod. 42, 399–404 (1990).

    CAS  PubMed  Google Scholar 

  • 4.

    Mizutani, M. Impacts of diversification of cytochrome P450 on plant metabolism. Biol. Pharm. Bulletin 35, 824–832 (2012).

    CAS  Google Scholar 

  • 5.

    Käppeli, O. Cytochromes P-450 of yeasts. Microbiol. Rev. 50, 244–258 (1986).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Anzenbacher, P. & Anzenbacherová, E. Cytochromes P450 and metabolism of xenobiotics. Cell. Mol. Life. Sci. 58, 737–747 (2001).

    CAS  PubMed  Google Scholar 

  • 7.

    Chen, W. et al. Fungal cytochrome P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 6, 1620–1634 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Fukuda, R. Metabolism of hydrophobic carbon sources and regulation of it in n-alkane-assimilating yeast Yarrowia lipolytica. Biosci. Biotechnol. Biochem. 77, 1149–1154 (2013).

    CAS  PubMed  Google Scholar 

  • 9.

    Rojo, F. Enzymes for aerobic degradation of alkanes. In Handbook of Hydrocarbon and Lipid Microbiology, (ed. Timis, K. N.) 480–499 (Springer-Velarg, 2010).

  • 10.

    Van Bogaert, I. N. A. et al. The role of cytochrome P450 monooxygenases in microbial fatty acid metabolism. FEBS J. 278, 206–221 (2011).

    PubMed  Google Scholar 

  • 11.

    Kretschmer, M., Wang, J. & Kronstad, J. W. Peroxisomal and mitochondrial β-oxidation pathways influence the virulence of the pathogenic fungus Cryptococcus neoformans. Eukaryot. Cell 11, 1042–1054 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Singh, S. N., Kumari, B. & Mishra, S. Microbial degradation of alkanes. In Microbial Degradation of Xenobiotics, (ed. Singh, S. N.) 439–469 (Springer-Velarg, 2012).

  • 13.

    Ohkuma, M. et al. CYP52 (cytochrome P450alk) multigene family in Candida maltosa: identification and characterization of eight members. DNA Cell Biol. 4, 163–173 (1995).

    Google Scholar 

  • 14.

    Craft, D. L., Madduri, K. M., Eshoo, M. & Ron-Wilson, C. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to β, ω-Dicarboxylic acids. Appl. Environ. Microbiol. 69, 5983–5991 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 15.

    Kim, D., Cryle, M. J., De Voss, J. J. & Ortiz de Montellano, P. R. Functional expression and characterization of cytochrome P450 52A21 from Candida albicans. Arch. Biochem. Biophys. 464, 213–220 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 16.

    Hirakawa, K. et al. Yas3p, an Opi1 family transcription factor, regulates cytochrome P450 expression in response to n-alkanes in Yarrowia lipolytica. J. Biol. Chem. 284, 7126–7137 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Moktali, V. et al. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13, 525 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Iwama, R., Kobayashi, S., Ishimaru, C. & Ohta, A. Functional roles and substrate specificities of twelve cytochromes P450 belonging to CYP52 family in n-alkane assimilating yeast Yarrowia lipolytica. Fungal Genet. Biol. 91, 43–54 (2016).

    CAS  PubMed  Google Scholar 

  • 19.

    Iida, T., Sumita, T., Ohta, A. & Takagi, M. The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16, 1077–1087 (2000).

    CAS  PubMed  Google Scholar 

  • 20.

    Ortiz-Alvarez, J. et al. Candida pseudoglaebosa and Kodamaea ohmeri are capable of degrading alkanes in presence of heavy metals. J. Basic Microbiol. 59, 792–806 (2019).

    CAS  PubMed  Google Scholar 

  • 21.

    Dujon, B. Yeast evolutionary genomics. Nat. Rev.Genet. 11, 512–524 (2010).

    CAS  PubMed  Google Scholar 

  • 22.

    Mohanta, T. K. & Bae, H. The diversity of fungal genome. Biol. Proced. Online 17, 1–9 (2015).

    CAS  Google Scholar 

  • 23.

    Dujon, B. A. & Louis, E. J. Genome diversity and evolution in the budding yeasts (Saccharomycotina). Genetics 206, 717–750 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Butler, G. et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459, 657–662 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Génolevures Consortium. et al. Comparative genomics of protoploid Saccharomycetaceae. Genome Res. 19, 1696–1709 (2009).

    Google Scholar 

  • 26.

    Loira, N., Dulermo, T., Nicaud, J. M. & Sherman, D. J. A. genome-scale metabolic model of the lipid-accumulating yeast Yarrowia lipolytica. BMC Syst. Biol. 6, 35 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Kafri, R., Levy, M. & Pilpel, Y. The regulatory utilization of genetic redundancy through responsive backup circuits. Proc. Natl. Acad. Sci. 103, 11653–11658 (2006).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    DeLuna, A. et al. Exposing the fitness contribution of duplicated genes. Nat. Genet. 40, 676–681 (2008).

    CAS  PubMed  Google Scholar 

  • 29.

    Diss, G., Ascencio, D., Deluna, A. & Landry, C. R. Molecular mechanisms of paralogous compensation and the robustness of cellular networks. J. Exp. Zool. B. Mol. Dev. Evol. 322, 488–499 (2014).

    PubMed  Google Scholar 

  • 30.

    Gagnon-Arsenault, I. et al. Gene duplication can impart fragility, not robustness, in the yeast protein interaction network. Science 355, 630–634 (2017).

    ADS  PubMed  Google Scholar 

  • 31.

    Pires, J. C. & Conant, G. C. Robust yet fragile: expression noise, protein misfolding, and gene dosage in the evolution of genomes. Ann. Rev. Genet. 50, 113–131 (2016).

    CAS  PubMed  Google Scholar 

  • 32.

    Dujon, B. et al. Genome evolution in yeasts. Nature 430, 35–44 (2004).

    ADS  PubMed  Google Scholar 

  • 33.

    Parra-Ortega, B., Cruz-Torres, H., Villa-Tanaca, L. & Hernández-Rodríguez, C. Phylogeny and evolution of the aspartyl protease family from clinically relevant Candida species. Mem. Inst. Oswaldo Cruz 104, 505–512 (2009).

    CAS  PubMed  Google Scholar 

  • 34.

    Ames, R. M., Money, D. & Lovell, S. C. Inferring gene family histories in yeast identifies lineage specific expansions. PLoS ONE 9, e99480 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Cortés-Acosta, E. et al. Polymorphism in the regulatory regions of genes CgYPS1 and CgYPS7 encoding yapsins in Candida glabrata is associated with changes in expression levels. FEMS Yeast Res. 17, fox077 (2017).

    Google Scholar 

  • 36.

    Cliften, P. F., Fulton, R. S., Wilson, R. K. & Johnston, M. After the duplication: gene loss and adaptation in Saccharomyces genomes. Genetics 172, 863–872 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Naseeb, S., Ames, R. M., Delneri, D. & Lovell, S. C. Rapid functional and evolutionary changes follow gene duplication in yeast. Proc. Biol. Sci. 284, 20171393 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Wolfe, K. H. Origin of the Yeast Whole-Genome Duplication. PLoS Biol. 13, e1002221 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Pérez-Brito, D. et al. Genetic diversity of Clavispora lusitaniae isolated from Agave fourcroydes Lem, as revealed by DNA fingerprinting. J. Microbiol. 53, 14–20 (2015).

    PubMed  Google Scholar 

  • 40.

    Durrens, P. et al. Genome sequence of the yeast Clavispora lusitaniae type strain CBS 6936. Genome Announc. 5, pii: e00724-17 (2012).

  • 41.

    Zieniuk, B. & Fabiszewska, A. Yarrowia lipolytica: a beneficious yeast in biotechnology as a rare opportunistic fungal pathogen: a minireview. World J. Microbiol. Biotechnol. 35, 10 (2019).

    Google Scholar 

  • 42.

    Hassanshahian, M., Tebyanian, H. & Cappello, S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar. Pollut. Bull. 64, 1386–1391 (2012).

    CAS  PubMed  Google Scholar 

  • 43.

    Flores, M., Corral, S., Cano-García, L., Salvador, A. & Belloch, C. Yeast strains as potential aroma enhancers in dry fermented sausages. Int. J. Food Microbiol. 212, 16–24 (2015).

    CAS  PubMed  Google Scholar 

  • 44.

    Fan, M. Y., Xie, R. J. & Qin, G. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Environ. Technol. 35, 391–399 (2014).

    CAS  PubMed  Google Scholar 

  • 45.

    Gargouri, B., Mhiri, N., Karray, F., Aloui, F. & Sayadi, S. Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed. Res. Int. 2015, 929424 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Rehman, A. & Anjum, M. S. Multiple metal tolerance and biosorption of cadmium by Candida tropicalis isolated from industrial effluents: glutathione as detoxifying agent. Environ. Monit. Assess. 174, 585–595 (2011).

    CAS  PubMed  Google Scholar 

  • 47.

    Ilyas, S. & Rehman, A. Oxidative stress, glutathione level and antioxidant response to heavy metals in multi-resistant pathogen, Candida tropicalis. Environ. Monit. Assess. 187, 4115 (2015).

    PubMed  Google Scholar 

  • 48.

    Zuza-Alves, D. L., Silva-Rocha, W. P. & Chaves, G. M. An update on Candida tropicalis based on basic and clinical approaches. Front. Microbiol. 8, 1927 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Martini, C., Tauk-Tornisielo, S. M., Codato, C. B., Bastos, R. G. & Ceccato-Antonini, S. R. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media. World J. Microbiol. Biotechnol. 32, 80 (2016).

    PubMed  Google Scholar 

  • 50.

    Karimi, M. & Hassanshahian, M. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman. Braz. J. Microbiol. 47, 18–24 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Savini, V. et al. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 54, 434–441 (2016).

    Google Scholar 

  • 52.

    Sánchez-Martínez, G. & Wagner, M. R. Host preference and attack pattern of Dendroctonus rhizophagus (Coleoptera: Curculionidae:Scolytinae): a bark beetle specialist on pine regeneration. Environ. Entomol. 38, 1197–1204 (2009).

    PubMed  Google Scholar 

  • 53.

    Strom, B. L., Smith, S. L. & Brownie, C. Attractant and disruptant semiochemicals for Dendroctonus jeffreyi (Coleoptera: Curculionidae: Scolytinae). Environ. Entomol. 42, 323–332 (2013).

    CAS  PubMed  Google Scholar 

  • 54.

    Kurtzman, C. P. & Fell, J. W. The yeast, A taxonomy Study (Elsevier-Science, 1997).

  • 55.

    Lin, Z. & Li, W. H. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol. Biol. Evol. 28, 131–142 (2011).

    ADS  CAS  PubMed  Google Scholar 

  • 56.

    Berthelot, C. et al. Adaptation of proteins to the cold in Antarctic fish: a role for methionine? Genome Biol. Evol. 11, 220–231 (2019).

    CAS  Google Scholar 

  • 57.

    Libuda, D. E. & Winston, F. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443, 1003–1007 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Meunchan, M. et al. Comprehensive analysis of a yeast lipase family in the Yarrowia clade. PLoS One 10, e0143096 (2015).

  • 59.

    Godinho, C. P., Dias, P. J., Ponçot, E. & Sá-Correia, I. The paralogous genes PDR18and SNQ2, encoding multidrug resistance ABC transporters, derive from a recent duplication event, PDR18 being specific to the Saccharomyces genus. Front. Genet. 9,  476 (2018).

  • 60.

    Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. Biol. Sci. 279, 5048–5057 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Mattenberger, F., Sabater-Muñoz, B., Toft, C. & Fares, M. A. The phenotypic plasticity of duplicated genes in Saccharomyces cerevisiae and the origin of adaptations. G3 (Bethesda) 7, 63–75 (2017).

    CAS  Google Scholar 

  • 62.

    Chase, J. M. Ecological niche theory. In The theory of ecology. (eds. Scheinerand, M. & Willig, M. R.) 93–108 (University of Chicago Press, 2011).

  • 63.

    Bak, S. et al. Cytochromes P450. Arabidopsis Book 9, e0144 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Sezutsu, H., Le Goff, G. & Feyereisen, R. Origins of P450 diversity. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20120428 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Voordeckers, K. et al. Reconstruction of ancestral metabolic enzymes reveals molecular mechanisms underlying evolutionary innovation through gene duplication. PLoS Biology 10 (2012).

  • 66.

    Siddiq, M. A., Hochberg, G. K. & Thornton, J. W. Evolution of protein specificity: insights from ancestral protein reconstruction. Curr. Opin. Struct. Biol. 47, 113–122 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 67.

    Newton, M. S., Arcus, V. L., Gerth, M. L. & Patrick, W. M. Enzyme evolution: innovation is easy, optimization is complicated. Curr. Opin. Struct. Biol. 48, 110–116 (2018).

    CAS  PubMed  Google Scholar 

  • 68.

    Syed, K. & Mashele, S. S. Comparative analysis of P450 signature motifs EXXR and CXG in the large and diverse kingdom of fungi: identification of evolutionarily conserved amino acid patterns characteristic of P450 family. PLoS One 17, e95616 (2014).

    ADS  Google Scholar 

  • 69.

    Sirim, D., Widmann, M., Wagner, F. & Pleiss, J. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. BMC Struct. Biol. 10, 34 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 70.

    Risso, V. A. et al. Mutational studies on resurrected ancestral proteins reveal conservation of site-specific amino acid preferences throughout evolutionary history. Mol. Biol. Evol. 32, 440–455 (2015).

    PubMed  Google Scholar 

  • 71.

    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    PubMed  PubMed Central  Google Scholar 

  • 72.

    Gouy., S., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interphase for sequence alignment and phylogenetic three building. Mol. Biol. Evol. 27, 221–224 (2014).

    Google Scholar 

  • 73.

    Darriba, D., Taboada, G. L. & Posada, D. ProtTest 3: fast selection of best-fit models of protein evolution. Mol. Biol. Evol. 27, 1164–1165 (2011).

    CAS  Google Scholar 

  • 74.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 76.

    Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273 (1979).

    ADS  CAS  PubMed  MATH  Google Scholar 

  • 77.

    Lockhart, S. R. et al. Development and verification of fingerprinting probes for Candida glabrata. Microbiology 143, 3733–3746 (1997).

    CAS  PubMed  Google Scholar 

  • 78.

    Bautista-Muñoz, C., Boldo, X. M., Villa-Tanaca, L. & Hernández-Rodríguez, C. Identification of Candida spp. by randomly amplified polymorphic DNA analysis and differentiation between Candida albicans and Candida dubliniensis by direct PCR methods. J. Clin. Microbiol. 41, 414–420 (2003).

    PubMed  PubMed Central  Google Scholar 

  • 79.

    Rohlf, F.J. NTSYS-pc 2.0e. Exeter Software, New York (1998).

  • 80.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 81.

    Aszodi, A., Munro, R. E. & Taylor, W. R. Distance geometry based comparative modelling. Fold. Des. 2, S3–S6 (1997).

    CAS  PubMed  Google Scholar 

  • 82.

    Webb, B. & Sali, A. Protein Structure Modelling with MODELLER. Methods Mol. Biol. 1654, 39–54 (2017).

    CAS  PubMed  Google Scholar 

  • 83.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thorton, J. M. PROCHECK: a program to check the stereochemical quality of protein structure. J. Appl. Cryst. 26, 283–291 (1993).

    CAS  Google Scholar 

  • 85.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  PubMed  Google Scholar 

  • 86.

    Phillips, J. C., Braun, R. & Wang., W. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 87.

    Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).

    CAS  PubMed  Google Scholar 

  • 88.

    Morris, G. & Huey, R. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 89.

    Campanella, J. J., Bitincka, L. & Smalley, J. MatGAT: An application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4, 29 (2003).

    PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Texture features explain the susceptibility of grapevine cultivars to Drosophila suzukii (Diptera: Drosophilidae) infestation in ripening and drying grapes

    Publisher Correction: Projected shifts in the foraging habitat of crabeater seals along the Antarctic Peninsula