in

Phytoplankton dynamics in a changing Arctic Ocean

  • 1.

    AMAP. Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 (AMAP, 2017).

  • 2.

    Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    CAS  Article  Google Scholar 

  • 3.

    Haine, T. W. N. et al. Arctic freshwater export: status, mechanisms, and prospects. Glob. Planet. Change 125, 13–35 (2015).

    Article  Google Scholar 

  • 4.

    Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. 94, 14485–14498 (1989).

    Article  Google Scholar 

  • 5.

    Aagaard, K., Coachman, L. K. & Carmack, E. On the halocline of the Arctic Ocean. Deep Sea Res. Pt A 28, 529–545 (1981).

    Article  Google Scholar 

  • 6.

    Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).

    CAS  Article  Google Scholar 

  • 7.

    Aagaard, K. & Coachman, L. K. Toward an ice-free Arctic ocean. Eos Trans. Amer. Geophys. Union 56, 484–486 (1975).

    Article  Google Scholar 

  • 8.

    Kwok, R. Arctic sea ice thickness, volume, and multiyear ice coverage: losses and coupled variability (1958–2018). Environ. Res. Lett. 13, 105005 (2018).

    Article  Google Scholar 

  • 9.

    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524 (2013).

    CAS  Article  Google Scholar 

  • 10.

    Post, E. et al. Ecological dynamics across the Arctic associated with recent climate change. Science 325, 1355–1358 (2009).

    CAS  Article  Google Scholar 

  • 11.

    Gregory, A. C. et al. Marine viral macro- and micro-diversity from pole to pole. Cell 177, 1109–1123 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Arrigo, K. R., van Dijken, G. & Pabi, S. Impact of a shrinking Arctic ice cover on marine primary production. Geophys. Res. Lett. 35, L19603 (2008).

    Article  Google Scholar 

  • 13.

    Kahru, M., Lee, Z.-P., Mitchell, B. G. & Nevison, C. D. Effects of sea ice cover on satellite-detected primary production in the Arctic ocean. Biol. Lett. 12, 20160223 (2016).

    Article  Google Scholar 

  • 14.

    Bélanger, S., Babin, M. & Tremblay, J.-É. Increasing cloudiness in Arctic damps the increase in phytoplankton primary production due to sea ice receding. Biogeosciences 10, 4087–4101 (2013).

    Article  Google Scholar 

  • 15.

    Kahru, M., Brotas, V., Manzano-Sarabio, M. & Mitchell, B. G. Are phytoplankton blooms occurring earlier in the Arctic? Glob. Change Biol. 17, 1733–1739 (2010).

    Article  Google Scholar 

  • 16.

    Ardyna, M. et al. Recent Arctic Ocean sea-ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212 (2014).

    Article  Google Scholar 

  • 17.

    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70 (2015).

    Article  Google Scholar 

  • 18.

    Lewis, K. M., van Dijken, G. & Arrigo, K. R. Changes in phytoplankton concentration, not sea ice, now drive increased Arctic Ocean primary production. Science 369, 198–202 (2020).

    CAS  Article  Google Scholar 

  • 19.

    Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep Sea Res. Pt. 2 49, 5969–5990 (2002).

    CAS  Article  Google Scholar 

  • 20.

    Sherr, E. B., Sherr, B. F. & Ross, C. Microzooplankton grazing impact in the Bering Sea during spring sea ice conditions. Deep Sea Res. Pt. 2 94, 57–67 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Forest, A. et al. Biogenic carbon flows through the planktonic food web of the Amundsen Gulf (Arctic Ocean): a synthesis of field measurements and inverse modeling analyses. Prog. Oceanogr. 91, 410–436 (2011).

    Article  Google Scholar 

  • 22.

    Franzè, G. & Lavrentyev, P. J. Microbial food web structure and dynamics across a natural temperature gradient in a productive polar shelf system. Mar. Ecol. Prog. Ser. 569, 89–102 (2017).

    Article  CAS  Google Scholar 

  • 23.

    Menden-Deuer, S., Lawrence, C. & Franzè, G. Herbivorous protist growth and grazing rates at in situ and artificially elevated temperatures during an Arctic phytoplankton spring bloom. PeerJ 6, e5264 (2018).

    Article  CAS  Google Scholar 

  • 24.

    Carmack, E. C. & Wassmann, P. Food webs and physical-biological coupling on pan-Arctic shelves: unifying concepts and comprehensive perspectives. Prog. Oceanogr. 71, 446–477 (2006).

    Article  Google Scholar 

  • 25.

    Harrison, W. G. & Cota, G. F. Primary production in polar waters: relation to nutrient availability. Polar Res. 10, 87–104 (1991).

    Article  Google Scholar 

  • 26.

    Sakshaug, E. in The Organic Carbon Cycle in the Arctic Ocean (eds Stein, R. & MacDonald, R. W.) 57–81 (Springer, 2004).

  • 27.

    Michel, C., Nielsen, T. G., Nozais, C. & Gosselin, M. Significance of sedimentation and grazing by ice micro- and meiofauna for carbon cycling in annual sea ice (northern Baffin Bay). Aquat. Microb. Ecol. 30, 57–68 (2002).

    Article  Google Scholar 

  • 28.

    Krause, J. W. et al. Biogenic silica production and diatom dynamics in the Svalbard region during spring. Biogeosciences 15, 6503–6517 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Ardyna, M., Gosselin, M., Michel, C., Poulin, M. & Tremblay, J.-É. Environmental forcing of phytoplankton community structure and function in the Canadian High Arctic: contrasting oligotrophic and eutrophic regions. Mar. Ecol. Prog. Ser. 442, 37–57 (2011).

    CAS  Article  Google Scholar 

  • 30.

    Taylor, R. L. et al. Colimitation by light, nitrate, and iron in the Beaufort Sea in late summer. J. Geophys. Res. 118, 3260–3277 (2013).

    Article  Google Scholar 

  • 31.

    Tremblay, J.-É. et al. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Prog. Oceanogr. 139, 171–196 (2015).

    Article  Google Scholar 

  • 32.

    Tremblay, J.-É. & Gagnon, J. in Influence of Climate Change on the Changing Arctic and Sub-Arctic Conditions (eds J. C. J. Nihoul & A. G. Kostianoy) 73–93 (Springer, 2009).

  • 33.

    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: a review and perspectives. Prog. Oceanogr. 139, 66–88 (2015).

    Article  Google Scholar 

  • 34.

    Bourgault, D. et al. Turbulent nitrate fluxes in the Amundsen Gulf during ice-covered conditions. Geophys. Res. Lett. 38, L15602 (2011).

    Article  CAS  Google Scholar 

  • 35.

    Randelhoff, A., Fer, I., Sundfjord, A., Tremblay, J.-É. & Reigstad, M. Vertical fluxes of nitrate in the seasonal nitracline of the Atlantic sector of the Arctic Ocean. J. Geophys. Res. Oceans 121, 5282–5295 (2016).

    CAS  Article  Google Scholar 

  • 36.

    Toole, J. M. et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. J. Geophys. Res. Oceans 115, C10018 (2010).

    Article  Google Scholar 

  • 37.

    Lind, S., Ingvaldsen, R. B. & Furevik, T. Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat. Clim. Change 8, 634–639 (2018).

    Article  Google Scholar 

  • 38.

    Mioduszewski, J., Vavrus, S. & Wang, M. Diminishing Arctic sea ice promotes stronger surface winds. J. Climate 31, 8101–8119 (2018).

    Article  Google Scholar 

  • 39.

    Bendif, E. M. et al. Repeated species radiations in the recent evolution of the key marine phytoplankton lineage Gephyrocapsa. Nat. Commun. 10, 4234 (2019).

    Article  CAS  Google Scholar 

  • 40.

    Oziel, L. et al. Faster Atlantic currents drive poleward expansion of temperate marine species in the Arctic Ocean. Nat. Commun. 11, 1705 (2020).

    CAS  Article  Google Scholar 

  • 41.

    Neukermans, G., Oziel, L. & Babin, M. Increased intrusion of warming Atlantic water leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Change Biol. 24, 2545–2553 (2018).

    Article  Google Scholar 

  • 42.

    Oziel, L. et al. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. J. Geophys. Res. 122, 5121–5139 (2017).

    Article  Google Scholar 

  • 43.

    Paulsen, M. L. et al. Synechococcus in the Atlantic gateway to the Arctic Ocean. Front. Mar. Sci. 3, 191 (2016).

    Article  Google Scholar 

  • 44.

    Winter, A., Henderiks, J., Beaufort, L., Rickaby, R. E. M. & Brown, C. W. Poleward expansion of the coccolithophore Emiliania huxleyi. J. Plankton Res. 36, 316–325 (2014).

    CAS  Article  Google Scholar 

  • 45.

    Wassmann, P. et al. The contiguous domains of Arctic Ocean advection: trails of life and death. Prog. Oceanogr. 139, 42–65 (2015).

    Article  Google Scholar 

  • 46.

    Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V. & Aschan, M. Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proc. Royal Soc. B 282, 20151546 (2015).

    Article  Google Scholar 

  • 47.

    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl Acad. Sci. USA 114, 12202–12207 (2017).

    CAS  Article  Google Scholar 

  • 48.

    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677 (2015).

    Article  Google Scholar 

  • 49.

    Beaugrand, G. et al. Prediction of unprecedented biological shifts in the global ocean. Nat. Clim. Change 9, 237–243 (2019).

    Article  Google Scholar 

  • 50.

    Carmack, E. C. et al. Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J. Geophys. Res. Biogeosci. 121, 675–717 (2016).

    CAS  Article  Google Scholar 

  • 51.

    Marchese, C. et al. Changes in phytoplankton bloom phenology over the North Water (NOW) polynya: a response to changing environmental conditions. Polar Biol. 40, 1721–1737 (2017).

    Article  Google Scholar 

  • 52.

    Mayot, N. et al. Springtime export of Arctic sea ice influences phytoplankton production in the Greenland Sea. J. Geophys. Res. Oceans 125, e2019JC015799 (2020).

    Article  Google Scholar 

  • 53.

    Carmack, E. C. The alpha/beta ocean distinction: a perspective on freshwater fluxes, convection, nutrients and productivity in high-latitude seas. Deep Sea Res. Pt. 2 54, 2578–2598 (2007).

    Article  Google Scholar 

  • 54.

    Blais, M. et al. Contrasting interannual changes in phytoplankton productivity and community structure in the coastal Canadian Arctic Ocean. Limnol. Oceanogr. 62, 2480–2497 (2017).

    Article  Google Scholar 

  • 55.

    Meire, L. et al. High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett. 43, 9173–9182 (2016).

    CAS  Article  Google Scholar 

  • 56.

    Hawkings, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).

    CAS  Article  Google Scholar 

  • 57.

    Hawkings, J. et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cycle 30, 191–210 (2016).

    CAS  Article  Google Scholar 

  • 58.

    Arrigo, K. R. et al. Melting glaciers stimulate large summer phytoplankton blooms in southwest Greenland waters. Geophys. Res. Lett. 44, 6278–6285 (2017).

    Article  Google Scholar 

  • 59.

    Meire, L. et al. Marine-terminating glaciers sustain high productivity in Greenland fjords. Glob. Change Biol. 23, 5344–5357 (2017).

    Article  Google Scholar 

  • 60.

    Boone, W. et al. Coastal freshening prevents fjord bottom water renewal in northeast Greenland: a mooring study from 2003 to 2015. Geophys. Res. Lett. 45, 2726–2733 (2018).

    Article  Google Scholar 

  • 61.

    Le Fouest, V. et al. Modeling plankton ecosystem functioning and nitrogen fluxes in the oligotrophic waters of the Beaufort Sea, Arctic Ocean: a focus on light-driven processes. Biogeosciences 10, 4785–4800 (2013).

    Article  Google Scholar 

  • 62.

    Le Fouest, V., Manizza, M., Tremblay, B. & Babin, M. Modelling the impact of riverine DON removal by marine bacterioplankton on primary production in the Arctic Ocean. Biogeosciences 12, 3385–3402 (2015).

    Article  CAS  Google Scholar 

  • 63.

    Tremblay, J.-É. et al. Impact of river discharge, upwelling and vertical mixing on the nutrient loading and productivity of the Canadian Beaufort Shelf. Biogeosciences 11, 4853–4868 (2014).

    Article  Google Scholar 

  • 64.

    Ardyna, M. et al. Shelf-basin gradients shape ecological phytoplankton niches and community composition in the coastal Arctic Ocean (Beaufort Sea). Limnol. Oceanogr. 62, 2113–2132 (2017).

    Article  Google Scholar 

  • 65.

    Fichot, C. G. et al. Pan-Arctic distributions of continental runoff in the Arctic Ocean. Sci. Rep. 3, 1053 (2013).

    Article  CAS  Google Scholar 

  • 66.

    Matsuoka, A. et al. Pan-Arctic optical characteristics of colored dissolved organic matter: tracing dissolved organic carbon in changing Arctic waters using satellite ocean color data. Remote Sens. Environ. 200, 89–101 (2017).

    Article  Google Scholar 

  • 67.

    Arrigo, K. R. et al. Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep Sea Res. Pt. 2 105, 1–16 (2014).

    Article  Google Scholar 

  • 68.

    Arrigo, K. R. et al. Massive phytoplankton blooms under Arctic sea ice. Science 336, 1408 (2012).

    CAS  Article  Google Scholar 

  • 69.

    Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl Acad. Sci. USA 110, 13055–13060 (2013).

    CAS  Article  Google Scholar 

  • 70.

    French, N. H. F. et al. Fire in Arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. Int. J. Wildland Fire 24, 1045–1061 (2015).

    Article  Google Scholar 

  • 71.

    Masrur, A., Petrov, A. N. & DeGroote, J. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001–2015. Environ. Res. Lett. 13, 014019 (2018).

    Article  Google Scholar 

  • 72.

    Evangeliou, N. et al. Open fires in Greenland in summer 2017: transport, deposition and radiative effects of BC, OC and BrC emissions. Atmos. Chem. Phys. 19, 1393–1411 (2019).

    CAS  Article  Google Scholar 

  • 73.

    Lutsch, E. et al. Unprecedented atmospheric ammonia concentrations detected in the high Arctic from the 2017 Canadian wildfires. J. Geophys. Res. Atmos. 124, 8178–8202 (2019).

    CAS  Article  Google Scholar 

  • 74.

    Skiles, S. M., Flanner, M., Cook, J. M., Dumont, M. & Painter, T. H. Radiative forcing by light-absorbing particles in snow. Nat. Clim. Change 8, 964–971 (2018).

    Article  Google Scholar 

  • 75.

    Light, B., Eicken, H., Maykut, G. A. & Grenfell, T. C. The effect of included participates on the spectral albedo of sea ice. J. Geophys. Res. Oceans 103, 27739–27752 (1998).

    Article  Google Scholar 

  • 76.

    Holland, M. M., Bailey, D. A., Briegleb, B. P., Light, B. & Hunke, E. Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on Arctic sea ice. J. Climate 25, 1413–1430 (2011).

    Article  Google Scholar 

  • 77.

    Marks, A. A., Lamare, M. L. & King, M. D. Optical properties of sea ice doped with black carbon – an experimental and radiative-transfer modelling comparison. Cryosphere 11, 2867–2881 (2017).

    Article  Google Scholar 

  • 78.

    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycle 20, GB4003 (2006).

    Article  CAS  Google Scholar 

  • 79.

    Mahowald, N. et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycle 22, GB4026 (2008).

    Article  CAS  Google Scholar 

  • 80.

    Torres-Valdés, S., Tsubouchi, T., Davey, E., Yashayaev, I. & Bacon, S. Relevance of dissolved organic nutrients for the Arctic Ocean nutrient budget. Geophys. Res. Lett. 43, 6418–6426 (2016).

    Article  CAS  Google Scholar 

  • 81.

    AMAP Assessment 2018: Arctic Ocean Acidification (AMAP, 2018).

  • 82.

    Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S. & Shimada, K. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt. Science 326, 1098–1100 (2009).

    CAS  Article  Google Scholar 

  • 83.

    Qi, D. et al. Increase in acidifying water in the western Arctic Ocean. Nat. Clim. Change 7, 195–199 (2017).

    CAS  Article  Google Scholar 

  • 84.

    Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).

    CAS  Article  Google Scholar 

  • 85.

    Hoppe, C. J. M. et al. Resistance of Arctic phytoplankton to ocean acidification and enhanced irradiance. Polar Biol. 41, 399–413 (2018).

    CAS  Article  Google Scholar 

  • 86.

    Hoppe, C. J. M., Schuback, N., Semeniuk, D. M., Maldonado, M. T. & Rost, B. Functional redundancy facilitates resilience of subarctic phytoplankton assemblages toward ocean acidification and high irradiance. Front. Mar. Sci. 4, 229 (2017).

    Article  Google Scholar 

  • 87.

    Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D. & Rost, B. Compensation of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim. Change 8, 529–533 (2018).

    CAS  Article  Google Scholar 

  • 88.

    Hussherr, R. et al. Impact of ocean acidification on Arctic phytoplankton blooms and dimethyl sulfide concentration under simulated ice-free and under-ice conditions. Biogeosciences 14, 2407–2427 (2017).

    CAS  Article  Google Scholar 

  • 89.

    White, E., Hoppe, C. J. M. & Rost, B. The Arctic picoeukaryote Micromonas pusilla benefits from ocean acidification under constant and dynamic light. Biogeosciences 17, 635–647 (2020).

    CAS  Article  Google Scholar 

  • 90.

    Yoshimura, T. et al. Impacts of elevated CO2 on particulate and dissolved organic matter production: microcosm experiments using iron-deficient plankton communities in open subarctic waters. J. Oceanogr. 69, 601–618 (2013).

    CAS  Article  Google Scholar 

  • 91.

    Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T. G. & Hansen, P. J. Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland. Mar. Ecol. Prog. Ser. 520, 21–34 (2015).

    CAS  Article  Google Scholar 

  • 92.

    Coello-Camba, A., Agustí, S., Holding, J., Arrieta, J. M. & Duarte, C. M. Interactive effect of temperature and CO2 increase in Arctic phytoplankton. Front. Mar. Sci. 1, 49 (2014).

    Article  Google Scholar 

  • 93.

    Perovich, D. K. & Polashenski, C. Albedo evolution of seasonal Arctic sea ice. Geophys. Res. Lett. 39, L08501 (2012).

    Article  Google Scholar 

  • 94.

    Perovich, D. K. The Optical Properties of Sea Ice (Office of Naval Research, 1996).

  • 95.

    Hill, V. J., Cota, G. & Stockwell, D. Spring and summer phytoplankton communities in the Chukchi and Eastern Beaufort Seas. Deep Sea Res. Pt 2 52, 3369–3385 (2005).

    Article  Google Scholar 

  • 96.

    Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E. Near-ubiquity of ice-edge blooms in the Arctic. Biogeosciences 7, 515–524 (2011).

    Article  Google Scholar 

  • 97.

    Janout, M. A. et al. Sea-ice retreat controls timing of summer plankton blooms in the Eastern Arctic Ocean. Geophys. Res. Lett. 12, 12493–12501 (2016).

    Article  Google Scholar 

  • 98.

    Sakshaug, E. Biomass and productivity distributions and their variability in the Barents Sea. ICES J. Mar. Sci. 54, 341–350 (1997).

    Article  Google Scholar 

  • 99.

    Subba Rao, D. V. & Platt, T. Primary production of arctic waters. Polar Biol. 3, 191–201 (1984).

    Article  Google Scholar 

  • 100.

    Pabi, S., van Dijken, G. L. & Arrigo, K. R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. 113, C08005 (2008).

    Article  CAS  Google Scholar 

  • 101.

    Arrigo, K. R. & van Dijken, G. L. Secular trends in Arctic Ocean net primary production. J. Geophys. Res. 116, C09011 (2011).

    Google Scholar 

  • 102.

    Fortier, M., Fortier, L., Michel, C. & Legendre, L. Climatic and biological forcing of the vertical flux of biogenic particles under seasonal Arctic sea ice. Mar. Ecol. Prog. Ser. 225, 1–16 (2002).

    Article  Google Scholar 

  • 103.

    Mundy, C. J. et al. Role of environmental factors on phytoplankton bloom initiation under landfast sea ice in Resolute Passage, Canada. Mar. Ecol. Prog. Ser. 497, 39–49 (2014).

    Article  Google Scholar 

  • 104.

    Duerksen, S. W. et al. Large, omega-3 rich, pelagic diatoms under Arctic Sea ice: sources and Implications for food webs. PLoS ONE 9, e114070 (2014).

    Article  CAS  Google Scholar 

  • 105.

    Galindo, V. et al. Contrasted sensitivity of DMSP production to high light exposure in two Arctic under-ice blooms. J. Exp. Mar. Biol. Ecol. 475, 38–48 (2016).

    CAS  Article  Google Scholar 

  • 106.

    Galindo, V. et al. Under-ice microbial dimethylsulfoniopropionate metabolism during the melt period in the Canadian Arctic Archipelago. Mar. Ecol. Prog. Ser. 524, 39–53 (2015).

    CAS  Article  Google Scholar 

  • 107.

    Galindo, V. et al. Biological and physical processes influencing sea ice, under-ice algae, and dimethylsulfoniopropionate during spring in the Canadian Arctic Archipelago. J. Geophys. Res. Oceans 119, 3746–3766 (2014).

    CAS  Article  Google Scholar 

  • 108.

    Ardyna, M. et al. Ecological drivers controlling spring phytoplankton blooms in the Arctic Ocean. Elem. Sci. Anth. 8, 30 (2020).

    Article  Google Scholar 

  • 109.

    Assmy, P. et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice. Sci. Rep. 7, 40850 (2017).

    CAS  Article  Google Scholar 

  • 110.

    Mayot, N. et al. Assessing phytoplankton activities in the seasonal ice zone of the Greenland Sea over an annual cycle. J. Geophys. Res. Oceans 123, 8004–8025 (2018).

    Article  Google Scholar 

  • 111.

    Strass, V. H. & Nöthig, E.-M. Seasonal shifts in ice edge phytoplankton blooms in the Barents Sea related to the water column stability. Polar Biol. 16, 409–422 (1996).

    Article  Google Scholar 

  • 112.

    Pavlov, A. K. et al. Altered inherent optical properties and estimates of the underwater light field during an Arctic under-ice bloom of Phaeocystis pouchetii. J. Geophys. Res. Oceans 122, 4939–4961 (2017).

    Article  Google Scholar 

  • 113.

    Lalande, C. et al. Variability in under-ice export fluxes of biogenic matter in the Arctic Ocean. Glob. Biogeochem. Cycle 28, 571–583 (2014).

    CAS  Article  Google Scholar 

  • 114.

    Yager, P. L. et al. Dynamic bacterial and viral response to an algal bloom at subzero temperatures. Limnol. Oceanogr. 46, 790–801 (2001).

    CAS  Article  Google Scholar 

  • 115.

    Hill, V. J., Light, B., Steele, M. & Zimmerman, R. C. Light availability and phytoplankton growth beneath Arctic sea ice: integrating observations and modeling. J. Geophys. Res. Oceans 123, 3651–3667 (2018).

    Article  Google Scholar 

  • 116.

    Lewis, K. M. et al. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnol. Oceanogr. 64, 284–301 (2019).

    CAS  Article  Google Scholar 

  • 117.

    Grebmeier, J. M. Shifting patterns of life in the Pacific Arctic and sub-Arctic seas. Annu. Rev. Mar. Sci. 4, 63–78 (2012).

    Article  Google Scholar 

  • 118.

    Grebmeier, J. M., Moore, S. E., Overland, J. E., Frey, K. E. & Gradinger, R. Biological response to recent Pacific Arctic sea ice retreats. Eos Trans. Amer. Geophys. Union 91, 161–162 (2010).

    Article  Google Scholar 

  • 119.

    Tamelander, T., Kivimäe, C., Bellerby, R. G. J., Renaud, P. E. & Kristiansen, S. Base-line variations in stable isotope values in an Arctic marine ecosystem: effects of carbon and nitrogen uptake by phytoplankton. Hydrobiologia 630, 63–73 (2009).

    CAS  Article  Google Scholar 

  • 120.

    Degen, R. et al. Patterns and drivers of megabenthic secondary production on the Barents Sea shelf. Mar. Ecol. Prog. Ser. 546, 1–16 (2016).

    Article  Google Scholar 

  • 121.

    Wassmann, P. & Reigstad, M. Future Arctic Ocean seasonal ice zones and implications for pelagic-benthic coupling. Oceanography 24, 220–231 (2011).

    Article  Google Scholar 

  • 122.

    Fujiwara, A. et al. Changes in phytoplankton community structure during wind-induced fall bloom on the central Chukchi shelf. Polar Biol. 41, 1279–1295 (2018).

    Article  Google Scholar 

  • 123.

    Uchimiya, M. et al. Coupled response of bacterial production to a wind-induced fall phytoplankton bloom and sediment resuspension in the Chukchi Sea Shelf, Western Arctic Ocean. Front. Mar. Sci. 3, 231 (2016).

    Article  Google Scholar 

  • 124.

    Goñi, M. A. et al. Particulate organic matter distributions in surface waters of the Pacific Arctic shelf during the late summer and fall season. Mar. Chem. 211, 75–93 (2019).

    Article  CAS  Google Scholar 

  • 125.

    Juranek, L., Takahashi, T., Mathis, J. & Pickart, R. Significant biologically mediated CO2 uptake in the Pacific Arctic during the late open water season. J. Geophys. Res. Oceans 124, 821–843 (2019).

    CAS  Article  Google Scholar 

  • 126.

    Not, F. et al. Late summer community composition and abundance of photosynthetic picoeukaryotes in Norwegian and Barents Seas. Limnol. Oceanogr. 50, 1677–1686 (2005).

    CAS  Article  Google Scholar 

  • 127.

    Ardyna, M. et al. Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates. Biogeosciences 10, 4383–4404 (2013).

    Article  CAS  Google Scholar 

  • 128.

    Wassmann, P., Peinert, R. & Smetacek, V. Patterns of production and sedimentation in the boreal and polar Northeast Atlantic. Polar Res. 10, 209–228 (1991).

    Article  Google Scholar 

  • 129.

    Martin, J. et al. Prevalence, structure and properties of subsurface chlorophyll maxima in Canadian Arctic waters. Mar. Ecol. Prog. Ser. 412, 69–84 (2010).

    CAS  Article  Google Scholar 

  • 130.

    Coupel, P. et al. The impact of freshening on phytoplankton production in the Pacific Arctic Ocean. Prog. Oceanogr. 131, 113–125 (2015).

    Article  Google Scholar 

  • 131.

    Huot, Y., Babin, M. & Bruyant, F. Photosynthetic parameters in the Beaufort Sea in relation to the phytoplankton community structure. Biogeosciences 10, 3445–3454 (2013).

    Article  Google Scholar 

  • 132.

    Monier, A. et al. Oceanographic structure drives the assembly processes of microbial eukaryotic communities. ISME J. 9, 990–1002 (2014).

    Article  CAS  Google Scholar 

  • 133.

    McLaughlin, F. A. & Carmack, E. C. Deepening of the nutricline and chlorophyll maximum in the Canada Basin interior. Geophys. Res. Lett. 37, L24602 (2010).

    Article  Google Scholar 

  • 134.

    Gran, H. H. Das Plankton des norwegischen Nordmeeres (Fiskeridirektoratets havforskningsinstitutt, 1902).

  • 135.

    Poulin, M. et al. The pan-Arctic biodiversity of marine pelagic and sea-ice unicellular eukaryotes: a first-attempt assessment. Mar. Biodiv. 41, 13–28 (2011).

    Article  Google Scholar 

  • 136.

    Lovejoy, C., von Quillfeldt, C., Hopcroft, R. R., Poulin, M. & Thaler, M. in State of the Arctic Marine Biodiversity Report (eds T Barry. et al.) 62–83 (Conservation of Arctic Flora and Fauna International Secretariat, 2017).

  • 137.

    Tremblay, G. et al. Late summer phytoplankton distribution along a 3500 km transect in Canadian Arctic waters: strong numerical dominance by picoeukaryotes. Aquat. Microb. Ecol. 54, 55–70 (2009).

    Article  Google Scholar 

  • 138.

    Berge, J. et al. Diel vertical migration of Arctic zooplankton during the polar night. Biol. Lett. 5, 69–72 (2009).

    Article  Google Scholar 

  • 139.

    Lovejoy, C. et al. Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in Arctic seas. J. Phycol. 43, 78–89 (2007).

    CAS  Article  Google Scholar 

  • 140.

    Stoecker, D. K. & Lavrentyev, P. J. Mixotrophic plankton in the polar seas: a pan-Arctic review. Front. Mar. Sci. 5, 292 (2018).

    Article  Google Scholar 

  • 141.

    Balzano, S. et al. Diversity of cultured photosynthetic flagellates in the northeast Pacific and Arctic Oceans in summer. Biogeosciences 9, 4553–4571 (2012).

    CAS  Article  Google Scholar 

  • 142.

    Joli, N. et al. Need for focus on microbial species following ice melt and changing freshwater regimes in a Janus Arctic Gateway. Sci. Rep. 8, 9405 (2018).

    Article  CAS  Google Scholar 

  • 143.

    Okolodkov, Y. B. The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4, 351–369 (2005).

    Article  Google Scholar 

  • 144.

    Brosnahan, M. L., Fischer, A. D., Lopez, C. B., Moore, S. K. & Anderson, D. M. Cyst-forming dinoflagellates in a warming climate. Harmful Algae 91, 101728 (2020).

    Article  Google Scholar 

  • 145.

    Lefebvre, K. A. et al. Prevalence of algal toxins in Alaskan marine mammals foraging in a changing arctic and subarctic environment. Harmful Algae 55, 13–24 (2016).

    CAS  Article  Google Scholar 

  • 146.

    Lovejoy, C., Legendre, L., Martineau, M. J., Bacle, J. & von Quillfeldt, C. H. Distribution of phytoplankton and other protists in the North Water. Deep Sea Res. Pt 2 49, 5027–5047 (2002).

    Article  Google Scholar 

  • 147.

    Booth, B. C. et al. Dynamics of Chaetoceros socialis blooms in the North Water. Deep Sea Res. Pt 2 49, 5003–5025 (2002).

    CAS  Article  Google Scholar 

  • 148.

    Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. & Lancelot, C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J. Sea. Res. 53, 43–66 (2005).

    CAS  Article  Google Scholar 

  • 149.

    Smith, W. O. et al. Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352, 514–516 (1991).

    Article  Google Scholar 

  • 150.

    Simo-Matchim, A. G., Gosselin, M., Poulin, M., Ardyna, M. & Lessard, S. Summer and fall distribution of phytoplankton in relation to environmental variables in Labrador fjords, with special emphasis on Phaeocystis pouchetii. Mar. Ecol. Prog. Ser. 572, 19–42 (2017).

    CAS  Article  Google Scholar 

  • 151.

    Crawford, D. W., Cefarelli, A. O., Wrohan, I. A., Wyatt, S. N. & Varela, D. E. Spatial patterns in abundance, taxonomic composition and carbon biomass of nano- and microphytoplankton in Subarctic and Arctic Seas. Prog. Oceanogr. 162, 132–159 (2018).

    Article  Google Scholar 

  • 152.

    Nöthig, E.-M. et al. Summertime plankton ecology in Fram Strait—a compilation of long- and short-term observations. Polar Res. 34, 23349 (2015).

    Article  CAS  Google Scholar 

  • 153.

    Hodal, H., Falk-Petersen, S., Hop, H., Kristiansen, S. & Reigstad, M. Spring bloom dynamics in Kongsfjorden, Svalbard: nutrients, phytoplankton, protozoans and primary production. Polar Biol. 35, 191–203 (2012).

    Article  Google Scholar 

  • 154.

    Hátún, H. et al. The subpolar gyre regulates silicate concentrations in the North Atlantic. Sci. Rep. 7, 14576 (2017).

    Article  CAS  Google Scholar 

  • 155.

    Slagstad, D., Wassmann, P. F. J. & Ellingsen, I. Physical constrains and productivity in the future Arctic Ocean. Front. Mar. Sci. 2, 85 (2015).

    Article  Google Scholar 

  • 156.

    Hegseth, E. N. et al. in The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 173–227 (Springer International Publishing, 2019).

  • 157.

    Lacour, T. et al. Decoupling light harvesting, electron transport and carbon fixation during prolonged darkness supports rapid recovery upon re-illumination in the Arctic diatom Chaetoceros neogracilis. Polar Biol. http://doi.org/d6rs (2019).

  • 158.

    Kvernvik, A. C. et al. Fast reactivation of photosynthesis in arctic phytoplankton during the polar night. J. Phycol. 54, 461–470 (2018).

    CAS  Article  Google Scholar 

  • 159.

    McMinn, A. & Martin, A. Dark survival in a warming world. Proc. Biol. Sci. 280, 20122909 (2013).

    CAS  Google Scholar 

  • 160.

    Joli, N., Monier, A., Logares, R. & Lovejoy, C. Seasonal patterns in Arctic prasinophytes and inferred ecology of Bathycoccus unveiled in an Arctic winter metagenome. ISME J. 11, 13727 (2017).

    Article  Google Scholar 

  • 161.

    Vader, A., Marquardt, M., Meshram, A. R. & Gabrielsen, T. M. Key Arctic phototrophs are widespread in the polar night. Polar Biol. 38, 13–21 (2015).

    Article  Google Scholar 

  • 162.

    McMinn, A. & Martin, A. Dark survival in a warming world. Proc. Biol. Sci. 280, 20122909 (2013).

    CAS  Google Scholar 

  • 163.

    van de Poll, W., Abdullah, E., Visser, R., Fischer, P. & Buma, A. Taxon-specific dark survival of diatoms and flagellates affects Arctic phytoplankton composition during the polar night and early spring. Limnol. Oceanogr. 65, 903–914 (2019).

    Article  Google Scholar 

  • 164.

    Boyd, P. W., Lennartz, S. T., Glover, D. M. & Doney, S. C. Biological ramifications of climate-change-mediated oceanic multi-stressors. Nat. Clim. Change 5, 71–79 (2014).

    Article  Google Scholar 

  • 165.

    Bopp, L. et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences 10, 6225–6245 (2013).

    Article  Google Scholar 

  • 166.

    Vancoppenolle, M. et al. Future Arctic Ocean primary productivity from CMIP5 simulations: uncertain outcome, but consistent mechanisms. Glob. Biogeochem. Cycle 27, 605–619 (2013).

    CAS  Article  Google Scholar 

  • 167.

    Tedesco, L., Vichi, M. & Scoccimarro, E. Sea-ice algal phenology in a warmer Arctic. Sci. Adv. 5, eaav4830 (2019).

    CAS  Article  Google Scholar 

  • 168.

    Babin, M. et al. Estimation of primary production in the Arctic Ocean using ocean colour remote sensing and coupled physical-biological models: strengths, limitations and how they compare. Prog. Oceanogr. 139, 197–220 (2015).

    Article  Google Scholar 

  • 169.

    Lacour, T., Larivière, J. & Babin, M. Growth, Chl a content, photosynthesis, and elemental composition in polar and temperate microalgae. Limnol. Oceanogr. 201, 43–58 (2016).

    Google Scholar 

  • 170.

    Lacour, T. et al. The role of sustained photoprotective non-photochemical quenching in low temperature and high light acclimation in the bloom-forming Arctic diatom Thalassiosira gravida. Front. Mar. Sci. 5, 354 (2018).

    Article  Google Scholar 

  • 171.

    Graham, R. M. et al. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean. Sci. Rep. 9, 9222 (2019).

    Article  CAS  Google Scholar 

  • 172.

    Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561 (2015).

    CAS  Article  Google Scholar 

  • 173.

    Berge, J. et al. In the dark: a review of ecosystem processes during the Arctic polar night. Prog. Oceanogr. 139, 258–271 (2015).

    Article  Google Scholar 

  • 174.

    Kipp, L. E., Charette, M. A., Moore, W. S., Henderson, P. B. & Rigor, I. G. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Sci. Adv. 4, eaao1302 (2018).

    Article  CAS  Google Scholar 

  • 175.

    Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411 (2016).

    CAS  Article  Google Scholar 

  • 176.

    Osman, M. B. et al. Industrial-era decline in subarctic Atlantic productivity. Nature 569, 551–555 (2019).

    CAS  Article  Google Scholar 

  • 177.

    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    CAS  Article  Google Scholar 

  • 178.

    Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  • 179.

    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

    CAS  Article  Google Scholar 

  • 180.

    Thornalley, D. J. R. et al. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years. Nature 556, 227–230 (2018).

    CAS  Article  Google Scholar 

  • 181.

    Moore, J. K. et al. Sustained climate warming drives declining marine biological productivity. Science 359, 1139–1143 (2018).

    CAS  Article  Google Scholar 

  • 182.

    Bakker, P. et al. Fate of the Atlantic Meridional Overturning Circulation: strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).

    Article  Google Scholar 

  • 183.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. Pt 2 56, 554–577 (2009).

    CAS  Article  Google Scholar 

  • 184.

    Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441–E1449 (2017).

    CAS  Article  Google Scholar 

  • 185.

    Cavalieri, D. J., Parkinson, C., Gloersen, P. & Zwally, H. J. Sea Ice Concentrations From Nimbus-7 SMMR and DMSP SSM/I Passive Microwave Data Version 1 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 1996); https://nsidc.org/data/NSIDC-0051/versions/1

  • 186.

    Tschudi, M., Meier, W. N., Stewart, J. S., Fowler, C. & Maslanik, J. EASE-Grid Sea Ice Age Version 4 (NASA National Snow and Ice Data Center Distributed Active Archive Center, 2019); https://doi.org/10.5067/UTAV7490FEPB

  • 187.

    Anderson, L. G. & Macdonald, R. W. Observing the Arctic Ocean carbon cycle in a changing environment. Polar Res. 34, 26891 (2015).

    Article  CAS  Google Scholar 

  • 188.

    Horner, R. & Schrader, G. C. Contributions of ice Algae, phytoplankton, and benthic microalgae to primary production in nearshore regions of the Beaufort Sea. Arctic 35, 485–503 (1982).

    Article  Google Scholar 

  • 189.

    Mundy, C. J. et al. Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophys. Res. Lett. 36, L17601 (2009).

    Article  Google Scholar 

  • 190.

    Oziel, L. et al. Environmental factors influencing the seasonal dynamics of under-ice spring blooms in Baffin Bay. Elem. Sci. Anth. 7, 34 (2019).

    Article  Google Scholar 

  • 191.

    Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: the role of stratification. J. Mar. Syst. 88, 385–400 (2011).

    Article  Google Scholar 

  • 192.

    Lalande, C., Nöthig, E. M. & Fortier, L. Algal export in the Arctic Ocean in times of global warming. Geophys. Res. Lett. 46, 5959–5967 (2019).

    Article  Google Scholar 

  • 193.

    Lalande, C., Grebmeier, J. M., Hopcroft, R. R. & Danielson, S. L. Annual cycle of export fluxes of biogenic matter near Hanna Shoal in the northeast Chukchi Sea. Deep Sea Res. Pt 2 177, 104730 (2020).

    CAS  Article  Google Scholar 

  • 194.

    Silkin, V., Pautova, L., Giordano, M., Kravchishina, M. & Artemiev, V. Interannual variability of Emiliania huxleyi blooms in the Barents Sea: in situ data 2014–2018. Mar. Pollut. Bull. 158, 111392 (2020).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    COVID19: an announced pandemic

    Saving Iñupiaq