in

Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning

  • 1.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant diversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    CAS  PubMed  Google Scholar 

  • 2.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but no systematic loss. Science 344, 296–299 (2014).

    CAS  PubMed  Google Scholar 

  • 3.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  PubMed  Google Scholar 

  • 4.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    PubMed  Google Scholar 

  • 5.

    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

  • 6.

    Schroeder-Georgi, T. et al. From pots to plots: hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).

    Google Scholar 

  • 7.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).

    Google Scholar 

  • 8.

    Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).

    PubMed  Google Scholar 

  • 9.

    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).

    PubMed  Google Scholar 

  • 10.

    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).

    Google Scholar 

  • 11.

    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).

    CAS  PubMed  Google Scholar 

  • 12.

    Díaz, S. et al. Incorporating plant functional diversity effects in ecosystem service assessments. Proc. Natl Acad. Sci. USA 104, 20684–20689 (2007).

    PubMed  Google Scholar 

  • 13.

    Grigulis, K. et al. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J. Ecol. 101, 47–57 (2013).

    Google Scholar 

  • 14.

    Liu, J. et al. Explaining maximum variation in productivity requires phylogenetic diversity and single functional traits. Ecology 96, 176–183 (2015).

    PubMed  Google Scholar 

  • 15.

    Yuan, Z. et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia 182, 1175–1185 (2016).

    PubMed  Google Scholar 

  • 16.

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    CAS  Google Scholar 

  • 17.

    Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

    Google Scholar 

  • 18.

    Reich, P. B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).

    Google Scholar 

  • 19.

    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  • 20.

    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300–1302 (1997).

    CAS  Google Scholar 

  • 21.

    Butterfield, B. J. & Suding, K. N. Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape. J. Ecol. 101, 9–17 (2013).

    Google Scholar 

  • 22.

    Gustafsson, C. & Norkko, A. Quantifying the importance of functional traits for primary production in aquatic plant communities. J. Ecol. 107, 154–166 (2018).

    Google Scholar 

  • 23.

    Craven, D. et al. Multiple facets of biodiversity drive the diversity–stability relationship. Nat. Ecol. Evol. 2, 1579–1587 (2018).

    PubMed  Google Scholar 

  • 24.

    Clark, C. M., Flynn, D. F. B., Butterfield, B. J. & Reich, P. B. Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE 7, e52821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Flombaum, P. & Sala, O. E. Effects of plant species traits on ecosystem processes: experiments in Patagonian steppe. Ecology 93, 227–234 (2012).

    PubMed  Google Scholar 

  • 26.

    Laliberté, E. & Tylianikis, J. M. Cascading effects of long-term land-use changes on plant traits and ecosystem functioning. Ecology 93, 145–155 (2012).

    PubMed  Google Scholar 

  • 27.

    Lienin, P. & Kleyer, M. Plant trait responses to the environment and effects on ecosystem properties. Basic Appl. Ecol. 13, 301–311 (2012).

    Google Scholar 

  • 28.

    Chanteloup, P. & Bonis, A. Functional diversity in root and above-ground traits in a fertile grassland shows a detrimental effect on productivity. Basic Appl. Ecol. 14, 208–216 (2013).

    Google Scholar 

  • 29.

    Jiang, J. et al. Litter species traits, but not richness, contribute to carbon and nitrogen dynamics in an alpine meadow on the Tibetan Plateau. Plant Soil 373, 931–941 (2013).

    CAS  Google Scholar 

  • 30.

    Lavorel, S. et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J. Veg. Sci. 24, 942–948 (2013).

    Google Scholar 

  • 31.

    Makkonen, M., Berg, M. P., van Logtestijn, R. S. P., van Hal, J. R. & Aerts, R. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos 122, 987–997 (2013).

    Google Scholar 

  • 32.

    Ziter, C., Bennett, E. M. & Gonzalez, A. Functional diversity and management mediate aboveground carbon stocks in small forest fragments. Ecosphere 4, 1–21 (2013).

  • 33.

    Barrufol, M. et al. Biodiversity promotes tree growth during succession in subtropical forest. PLoS ONE 8, e81246 (2014).

    Google Scholar 

  • 34.

    Bu, W., Zang, R. & Ding, Y. Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecol. (Montrouge) 55, 1–7 (2014).

    Google Scholar 

  • 35.

    Carvalho, G. H., Batalha, M. A., Silva, I. A., Cianciaruso, M. V. & Petchey, O. L. Are fire, soil fertility and toxicity, water availability, plant functional diversity, and litter decomposition related in a Neotropical savannah? Oecologia 175, 923–935 (2014).

    PubMed  Google Scholar 

  • 36.

    Cavanaugh, K. C. et al. Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob. Ecol. Biogeogr. 23, 563–573 (2014).

    Google Scholar 

  • 37.

    Hantsch, L. et al. No plant functional diversity effects of foliar fungal pathogens in experimental tree communities. Fungal Divers. 66, 139–151 (2014).

    Google Scholar 

  • 38.

    Lasky, J. R. et al. The relationship between tree biodiversity and biomass dynamics changes with tropical forest succession. Ecol. Lett. 17, 1158–1167 (2014).

    PubMed  Google Scholar 

  • 39.

    Milcu, A. et al. Functional diversity of leaf nitrogen concentrations drives grassland carbon fluxes. Ecol. Lett. 17, 435–444 (2014).

    PubMed  Google Scholar 

  • 40.

    Ruiz-Benito, P. et al. Diversity increases carbon storage and tree productivity in Spanish forests. Glob. Ecol. Biogeogr. 23, 311–322 (2014).

    Google Scholar 

  • 41.

    Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Google Scholar 

  • 42.

    Schuldt, A. et al. Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytol. 202, 864–873 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Álvarex-Yépiz, J. C. & Dovĉiak, M. Enhancing ecosystem function through conservation: threatened plants increase local carbon storage in tropical dry forests. Trop. Conserv. Sci. 8, 999–1008 (2015).

    Google Scholar 

  • 44.

    Debouk, H., de Bello, F. & Sebastià, M.-T. Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLoS ONE 10, e0141899 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Deraison, H., Badenhausser, I., Loeuille, N., Scherber, C. & Gross, N. Functional trait diversity across trophic levels determines herbivore impact on plant community biomass. Ecol. Lett. 18, 1346–1355 (2015).

    PubMed  Google Scholar 

  • 46.

    Frainer, A., Moretti, M. S., Xu, W. & Gessner, M. O. No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology 96, 550–561 (2015).

    PubMed  Google Scholar 

  • 47.

    Haase, J. et al. Contrasting effects of tree diversity on young tree growth and resistance to insect herbivores across three biodiversity experiments. Oikos 124, 1674–1685 (2015).

    Google Scholar 

  • 48.

    Kröber, W. et al. Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecol. Evol. 5, 3541–3556 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Lohbeck, M., Poorter, L., Martínez-Ramos, M. & Bongers, F. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession. Ecology 96, 1242–1252 (2015).

    PubMed  Google Scholar 

  • 50.

    Paquette, A., Joly, S. & Messier, C. Explaining forest productivity using tree functional traits and phylogenetic information: two sides of the same coin over evolutionary scale? Ecol. Evol. 5, 1774–1783 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 51.

    Rivest, D., Paquette, A., Shipley, B., Reich, P. B. & Messier, C. Tree communities rapidly alter soil microbial resistance and resilience to drought. Funct. Ecol. 29, 570–578 (2015).

    Google Scholar 

  • 52.

    Salisbury, C. L. & Potvin, C. Does tree species composition affect productivity in a tropical planted forest? Biotropica 47, 559–568 (2015).

    Google Scholar 

  • 53.

    Schwarz, B. et al. Non-significant tree diversity but significant identity effects on earthworm communities in three tree diversity experiments. Eur. J. Soil Biol. 67, 17–26 (2015).

    Google Scholar 

  • 54.

    Tardif, A. & Shipley, B. The relationship between functional dispersion of mixed-leaf litter mixtures and species’ interactions during decomposition. Oikos 124, 1050–1057 (2015).

    Google Scholar 

  • 55.

    Valencia, E. et al. Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands. New Phytol. 206, 660–671 (2015).

    PubMed  Google Scholar 

  • 56.

    Van Rooijen, N. M. et al. Plant species diversity mediates ecosystem stability of natural dune grasslands in response to drought. Ecosystems 18, 1383–1394 (2015).

    Google Scholar 

  • 57.

    Zhang, Y., Wang, R., Kaplan, D. & Liu, J. Which components of plant diversity are most correlated with ecosystem properties? A case study in a restored wetland in northern China. Ecol. Indic. 49, 228–236 (2015).

    Google Scholar 

  • 58.

    Barkaoui, K., Roumet, C. & Volaire, F. Mean root trait more than root trait diversity determines drought resilience in native and cultivated Mediterranean grass mixtures. Agric. Ecosyst. Environ. 231, 122–132 (2016).

    Google Scholar 

  • 59.

    Chiang, J.-M. et al. Functional composition drives ecosystem function through multiple mechanisms in a broadleaved subtropical forest. Oecologia 182, 829–840 (2016).

    PubMed  Google Scholar 

  • 60.

    De Vries, F. T. & Bardgett, R. Plant community controls on short-term ecosystem nitrogen retention. New Phytol. 210, 861–874 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 61.

    Jewell, M. D. et al. Partitioning the effect of composition and diversity of tree communities on leaf litter decomposition and soil respiration. Oikos 126, 959–971 (2016).

    Google Scholar 

  • 62.

    Lin, D. et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant Soil 409, 435–446 (2016).

    CAS  Google Scholar 

  • 63.

    Mason, N. W. H. et al. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity. Ecol. Evol. 6, 3079–3091 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 64.

    Mensah, S., Veldtman, R., Assogbadjo, A. E., Kakaï, R. G. & Seifert, T. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance. Ecol. Evol. 6, 7546–7557 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 65.

    Milcu, A. et al. Plant functional diversity increases grassland productivity-related water vapor fluxes: an Ecotron and modelling approach. Ecology 97, 2044–2054 (2016).

    PubMed  Google Scholar 

  • 66.

    Na, Z., Zhengwen, W., Xinqing, S. & Kun, W. Diversity components and assembly patterns of plant functional traits determine community spatial stability under resource gradients in a desert steppe. Rangel. J. 38, 511–521 (2016).

    Google Scholar 

  • 67.

    Ouyang, S. et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China. For. Ecol. Manage. 372, 291–302 (2016).

    Google Scholar 

  • 68.

    Prado-Junior, J. A. et al. Conservative species drive biomass productivity in tropical dry forests. J. Ecol. 104, 817–827 (2016).

    Google Scholar 

  • 69.

    Ratcliffe, S. et al. Modes of functional biodiversity control on tree productivity across the European continent. Glob. Ecol. Biogeogr. 25, 251–262 (2016).

    Google Scholar 

  • 70.

    Roscher, C. et al. Convergent high diversity in naturally colonized experimental grasslands is not related to increased productivity. Perspect. Plant Ecol. Evol. Syst. 20, 32–45 (2016).

    Google Scholar 

  • 71.

    Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).

    Google Scholar 

  • 72.

    Tobner, C. M. et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 19, 638–647 (2016).

    PubMed  Google Scholar 

  • 73.

    Wu, J., Wurst, S. & Zhang, X. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands. Sci. Rep. 6, 35649 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 74.

    Zhu, J., Jiang, L. & Zhang, Y. Relationships between functional diversity and aboveground biomass production in the Northern Tibetan alpine grasslands. Sci. Rep. 6, 34105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 75.

    Zuo, X. et al. Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Front. Plant Sci. 7, 189 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 76.

    Alberti, G. et al. Tree functional diversity influences belowground ecosystem functioning. Appl. Soil Ecol. 120, 160–168 (2017).

    Google Scholar 

  • 77.

    Ali, A. & Yan, E.-R. Functional identity of overstorey tree height and understorey conservative traits drive aboveground biomass in a subtropical forest. Ecol. Indic. 83, 158–168 (2017).

    Google Scholar 

  • 78.

    Ali, H. E., Reineking, B. & Münkemüller, T. Effects of plant functional traits on soil stability: intraspecific variability matters. Plant Soil 411, 359–375 (2017).

    CAS  Google Scholar 

  • 79.

    Barbe, L. et al. Functionally dissimilar neighbors accelerate litter decomposition in two grass species. New Phytol. 214, 1092–1102 (2017).

    PubMed  Google Scholar 

  • 80.

    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    PubMed  Google Scholar 

  • 81.

    Chillo, V., Ojeda, R. A., Capmourteres, V. & Anand, M. Functional diversity loss with increasing livestock grazing intensity in drylands: the mechanisms and their consequences depend on the taxa. J. Appl. Ecol. 54, 986–996 (2017).

    Google Scholar 

  • 82.

    Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).

    Google Scholar 

  • 83.

    Fornoff, F. et al. Functional flower traits and their diversity drive pollinator visitation. Oikos 126, 1020–1030 (2017).

    CAS  Google Scholar 

  • 84.

    Fujii, S. et al. Disentangling relationships between plant diversity and decomposition processes under forest restoration. J. Appl. Ecol. 54, 80–90 (2017).

    Google Scholar 

  • 85.

    Grace, J. B., Harrison, S. & Cornell, H. Is biotic resistance enhanced by natural variation in diversity? Oikos 126, 1484–1492 (2017).

    Google Scholar 

  • 86.

    Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 87.

    Grossman, J. J., Cavender-Bares, J., Hobbie, S. E., Reich, P. B. & Montgomery, R. A. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology 98, 2601–2614 (2017).

    PubMed  Google Scholar 

  • 88.

    Henneron, L. et al. Plant interactions as biotic drivers of plasticity in leaf litter traits and decomposability of Quercus petraea. Ecol. Monogr. 87, 321–340 (2017).

    Google Scholar 

  • 89.

    Hertzog, L. R., Ebeling, A., Weisser, W. W. & Meyer, S. T. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere 8, e01990 (2017).

    Google Scholar 

  • 90.

    Khlifa, R., Paquette, A., Messier, C., Reich, P. B. & Munson, A. D. Do temperate tree species diversity and identity influence soil microbial community function and composition? Ecol. Evol. 7, 7965–7974 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 91.

    Laforest-Lapointe, I., Paquette, A., Messier, C. & Kembel, S. W. Leaf bacterial diversity mediates plant diversity and ecosystem function relationships. Nature 546, 145–147 (2017).

    CAS  PubMed  Google Scholar 

  • 92.

    Laird-Hopkins, B. C., Bréchet, L. M., Trujillo, B. C. & Sayer, E. J. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 49, 903–911 (2017).

    Google Scholar 

  • 93.

    Li, W. et al. Community-level trait responses and intra-specific trait variability play important roles in driving community productivity in an alpine meadow on the Tibetan Plateau. J. Plant Ecol. 10, 592–600 (2017).

    Google Scholar 

  • 94.

    Mao, W., Felton, A. J. & Zhang, T. Linking changes to intraspecific trait diversity to community functional diversity and biomass in response to snow and nitrogen addition within an Inner Mongolian grassland. Front. Plant Sci. 8, 339 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 95.

    Meyer, S. T. et al. Consistent increase in herbivory along two experimental plant diversity gradients over multiple years. Ecosphere 8, e01876 (2017).

    Google Scholar 

  • 96.

    Mori, A. S., Osono, T., Cornelissen, J. H. C., Craine, J. & Uchida, M. Biodiversity ecosystem function relationships change through primary succession. Oikos 126, 1637–1649 (2017).

    Google Scholar 

  • 97.

    Pan, Y. et al. Climatic and geographic factors affect ecosystem multifunctionality through biodiversity in the Tibetan alpine grasslands. J. Mt. Sci. 14, 1604–1614 (2017).

    Google Scholar 

  • 98.

    Peco, B., Navarro, E., Carmona, C. P., Medina, N. G. & Marques, M. J. Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits. Agric. Ecosyst. Environ. 249, 215–225 (2017).

    Google Scholar 

  • 99.

    Pérez-Ramos, I. M. et al. Climate variability and community stability in Mediterranean shrublands: the role of functional diversity and soil environment. J. Ecol. 105, 1335–1346 (2017).

    Google Scholar 

  • 100.

    Poorter, L. et al. Biodiversity and climate determine the functioning of Neotropical forests. Glob. Ecol. Biogeogr. 26, 1423–1434 (2017).

    Google Scholar 

  • 101.

    Refsland, T. K. & Fraterrigo, J. M. Both canopy and understory traits act as response–effect traits in fire-managed forests. Ecosphere 8, e02036 (2017).

    Google Scholar 

  • 102.

    Sasaki, T. et al. Differential responses and mechanisms of productivity following experimental species loss scenarios. Oecologia 183, 785–795 (2017).

    PubMed  Google Scholar 

  • 103.

    Shihan, A. et al. Changes in soil microbial substrate utilization in response to altered litter diversity and precipitation in a Mediterranean shrubland. Biol. Fertil. Soils 53, 171–185 (2017).

    Google Scholar 

  • 104.

    Steinauer, K., Fischer, F. M., Roscher, C., Scheu, S. & Eisenhauer, N. Spatial plant resource acquisition traits explain plant community effects on soil microbial communities. Pedobiologia (Jena) 65, 50–57 (2017).

    Google Scholar 

  • 105.

    Sun, Z. et al. Positive effects of tree species richness on fine-root production in a subtropical forest in SE-China. J. Plant Ecol. 10, 146–157 (2017).

    Google Scholar 

  • 106.

    van der Sande, M. T. et al. Abiotic and biotic drivers of biomass change in a Neotropical forest. J. Ecol. 105, 1223–1234 (2017).

    Google Scholar 

  • 107.

    Wei, X., Reich, P. B., Hobbie, S. E. & Kazanski, C. E. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem. Glob. Change Biol. 23, 4717–4727 (2017).

    Google Scholar 

  • 108.

    Zhang, Q. et al. Functional dominance rather than taxonomic diversity and functional diversity mainly affects community aboveground biomass in the Inner Mongolia grassland. Ecol. Evol. 7, 1605–1615 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 109.

    Zirbel, C. R., Bassett, T., Grman, E. & Brudvig, L. A. Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. J. Appl. Ecol. 54, 1070–1079 (2017).

    Google Scholar 

  • 110.

    Blesh, J. Functional traits in cover crop mixtures: biological nitrogen fixation and multifunctionality. J. Appl. Ecol. 55, 38–48 (2018).

    Google Scholar 

  • 111.

    Chillo, V., Vázquez, D. P., Amoroso, M. M. & Bennett, E. M. Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest. Funct. Ecol. 32, 1390–1399 (2018).

    Google Scholar 

  • 112.

    Fu, H. et al. Hydrological gradients and functional diversity of plants drive ecosystem processes on Poyang Lake wetland. Ecohydrology 11, e1950 (2018).

    Google Scholar 

  • 113.

    Hao, M., Zhang, C., Zhao, X. & von Gadow, K. Functional and phylogenetic diversity determine wood productivity in temperate forest. Ecol. Evol. 8, 2395–2406 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 114.

    Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).

    Google Scholar 

  • 115.

    Navarro-Cano, J. A., Verdú, M. & Goberna, M. Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. J. Appl. Ecol. 55, 1195–1206 (2018).

    Google Scholar 

  • 116.

    Orwin, K. H. et al. Season and dominant species effects on plant trait–ecosystem function relationships in intensively grazed grassland. J. Appl. Ecol. 55, 236–245 (2018).

    Google Scholar 

  • 117.

    Roscher, C. et al. Origin context of trait data matters for predictions of community performance of a grassland biodiversity experiment. Ecology 99, 1214–1226 (2018).

    PubMed  Google Scholar 

  • 118.

    Van de Peer, T., Verheyen, K., Ponette, Q., Setiawan, N. N. & Muys, B. Overyielding in young tree plantations is driven by local complementarity and selection effects related to shade tolerance. J. Ecol. 106, 1096–1105 (2018).

    Google Scholar 

  • 119.

    Xie, G., Lundholm, J. T. & MacIvor, J. S. Phylogenetic diversity and plant trait composition predict multiple ecosystem functions in green roofs. J. Total Environ. 628–629, 1017–1026 (2018).

    Google Scholar 

  • 120.

    Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).

    CAS  PubMed  Google Scholar 

  • 121.

    Roscher, C. et al. The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community. Basic Appl. Ecol. 5, 107–121 (2004).

    Google Scholar 

  • 122.

    Weisser, W. W. et al. Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: patterns, mechanisms, and open questions. Basic Appl. Ecol. 23, 1–73 (2017).

    Google Scholar 

  • 123.

    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).

    Google Scholar 

  • 124.

    Botta-Dukát, Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J. Veg. Sci. 16, 533–540 (2005).

    Google Scholar 

  • 125.

    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).

    Google Scholar 

  • 126.

    van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).

    PubMed  Google Scholar 

  • 127.

    Sørenson, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. K. Dan. Vid. Selsk. 5, 1–34 (1948).

    Google Scholar 

  • 128.

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–191 (2007).

    CAS  PubMed  Google Scholar 

  • 129.

    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).

    PubMed  Google Scholar 

  • 130.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2017).

    PubMed  Google Scholar 

  • 131.

    Raffard, A., Santoul, F., Cucherousset, J. & Blanchet, S. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biol. Rev. 94, 648–661 (2019).

    PubMed  Google Scholar 

  • 132.

    Roscher, C. et al. Interspecific trait differences rather than intraspecific trait variation increase the extent and filling of plant community space with increasing plant diversity in experimental grasslands. Perspect. Plant Ecol. Evol. Syst. 33, 42–50 (2018).

    Google Scholar 

  • 133.

    Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    PubMed  Google Scholar 

  • 134.

    Gounand, I., Little, C. J., Harvey, E. & Altermatt, F. Global quantitative synthesis of ecosystem functioning across climatic zones and ecosystem types. Glob. Ecol. Biogeogr. 29, 1139–1176 (2020).

  • 135.

    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).

    Google Scholar 

  • 136.

    Reich, P. B. et al. Relationship of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia 114, 471–482 (1998).

    PubMed  Google Scholar 

  • 137.

    Cramer, W. et al. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol. 7, 357–373 (2001).

    Google Scholar 

  • 138.

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    PubMed  Google Scholar 

  • 139.

    Millenium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

  • 140.

    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).

  • 141.

    Garnier, E. et al. Towards a thesaurus of plant characteristics: an ecological contribution. J. Ecol. 105, 298–309 (2016).

    Google Scholar 

  • 142.

    Ellenberg, H. Vegetation Mitteleuropas mit den Alpen. In ökologischer, dynamischer und historischer Sicht 5th edn (Ulmer, 1996).

  • 143.

    Jochum, M. et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1280-9 (2020).

  • 144.

    de Groot, R., Wilson, M. & Boumans, R. A typology for the classification description and valuation of ecosystem functions, goods and services. Ecol. Econ. 41, 393–408 (2002).

    Google Scholar 

  • 145.

    Gotschall, F. et al. Tree species identity determines wood decomposition via microclimatic effects. Ecol. Evol. 9, 12113–12127 (2019).

    Google Scholar 

  • 146.

    Salamanca, F., Kaneko, N. & Katagiri, S. Rainfall manipulation effects on litter decomposition and the microbial biomass of the forest floor. Appl. Soil Ecol. 22, 271–281 (2003).

    Google Scholar 

  • 147.

    Hu, W. et al. Nitrogen along the hydrological gradient of marsh sediments in a subtropical estuary: pools, processes and fluxes. Int. J. Environ. Res. Public Health 16, 2043 (2019).

    CAS  PubMed Central  Google Scholar 

  • 148.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

  • 149.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 150.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • 151.

    Bartón, K. Package ‘MuMIn’. Model selection and model averaging based on information criteria. R package version 3.0.2. (2018); https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf

  • 152.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 


  • Source: Ecology - nature.com

    Phylogeny resolved, metabolism revealed: functional radiation within a widespread and divergent clade of sponge symbionts

    Geologists raise the speed limit for how fast continental crust can form