in

Population genetics of the European rabbit along a rural-to-urban gradient

  • 1.

    United Nations, Department of Economic and Social Affairs, P. D. World Population Prospects: The 2015 Revision, Methodology of the United Nations Population estimates and Projections. ESA/P/WP.242 (2005).

  • 2.

    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. 109, 16083–16088 (2012).

  • 3.

    Grimm, N. B. et al. Global change and the ecology of cities. Science 319, 756–60 (2008).

  • 4.

    Johnson, M. T. J. & Munshi-South, J. Evolution of life in urban environments. Science 358, eaam8327 (2017).

  • 5.

    Pickett, S. T. A. et al. Urban Ecological Sysytems: Linking Terrestrial Ecological, Physical, and Socioeconomic of Metropolitan Areas. Annu. Rev. Ecol. Syst. 32, 127–157 (2001).

    • Article
    • Google Scholar
  • 6.

    Medley, K. E., McDonnell, M. J. & Pickett, S. T. A. Forest-landscape structure along an urban-to-rural gradient. Prof. Geogr. 47, 159–168 (1995).

    • Article
    • Google Scholar
  • 7.

    McDonnell, M. J. & Hahs, A. K. Adaptation and Adaptedness of Organisms to Urban Environments. Annu. Rev. Ecol. Evol. Syst. 46, 261–280 (2015).

    • Article
    • Google Scholar
  • 8.

    McDonnell, M. J. & Pickett, S. T. A. Ecosystem structure and function along urban-rural gradients: an unexploited opportunity for ecology. Ecology 71, 1232–1237 (1990).

    • Article
    • Google Scholar
  • 9.

    Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends in Ecology and Evolution 28, 614–621 (2013).

  • 10.

    Unfried, T. M., Hauser, L. & Marzluff, J. M. Effects of urbanization on Song Sparrow (Melospiza melodia) population connectivity. Conserv. Genet. 14, 41–53 (2012).

    • Article
    • Google Scholar
  • 11.

    Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS One 5, 1–11 (2010).

    • Google Scholar
  • 12.

    Wandeler, P., Funk, S. M., Largiadèr, C. R., Gloor, S. & Breitenmoser, U. The city-fox phenomenon: Genetic consequences of a recent colonization of urban habitat. Mol. Ecol. 12, 647–656 (2003).

  • 13.

    Munshi-South, J., Zolnik, C. P. & Harris, S. E. Population genomics of the Anthropocene: urbanization is negatively associated with genome-wide variation in white-footed mouse populations. Evol. Appl. 9, 546–564 (2016).

  • 14.

    Bartlewicz, J., Vandepitte, K., Jacquemyn, H. & Honnay, O. Population genetic diversity of the clonal self-incompatible herbaceous plant Linaria vulgaris along an urbanization gradient. Biol. J. Linn. Soc. 116, 603–613 (2015).

    • Article
    • Google Scholar
  • 15.

    Lourenço, A., Álvarez, D., Wang, I. J. & Velo-Antón, G. Trapped within the city: integrating demography, time since isolation and population-specific traits to assess the genetic effects of urbanization. Mol. Ecol. 26, 1498–1514 (2017).

  • 16.

    Miles, L. S., Rivkin, L. R., Johnson, M. T. J., Munshi‐South, J. & Verrelli, B. C. Gene flow and genetic drift in urban environments. Mol Ecol. 00, 1–14 (2019).

    • Google Scholar
  • 17.

    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).

    • Article
    • Google Scholar
  • 18.

    Rivkin, L. R. et al. A roadmap for urban evolutionary ecology. Evol. Appl. 12, 384–398 (2019).

  • 19.

    Culley, T. M., Sbita, S. J. & Wick, A. Population genetic effects of urban habitat fragmentation in the perennial herb Viola pubescens (Violaceae) using ISSR markers. Ann. Bot. 100, 91–100 (2007).

  • 20.

    Soro, A., Quezada-Euan, J. J. G., Theodorou, P., Moritz, R. F. A. & Paxton, R. J. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conserv. Genet. 18, 1–13 (2016).

    • Google Scholar
  • 21.

    Purrenhage, J. L., Niewiarowski, P. H. & Moore, F. B. G. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol. Ecol. 18, 235–247 (2009).

  • 22.

    Krawiec, J. S., Krauss, L., Davis, R. A. & Spencer, P. B. S. Weak genetic structuring suggests historically high genetic connectivity among recently fragmented urban populations of the scincid lizard, Ctenotus fallens. Aust. J. Zool. 63, 279–286 (2015).

    • Article
    • Google Scholar
  • 23.

    Deaton, R. et al. Effects of urbanization on genetic diversity, gene flow, and population structure in the ornate box turtle (Terrapene ornata). Amphib.-Reptil. 35, 87–97 (2014).

    • Article
    • Google Scholar
  • 24.

    Theodorou, P. et al. Genome-wide single nucleotide polymorphism scan suggests adaptation to urbanization in an important pollinator, the red-tailed bumblebee (Bombus lapidarius L.). Proc. R. Soc. B Biol. Sci. 285 (2018).

  • 25.

    Zhang, S., Suo, M., Liu, S. & Liang, W. Do Major Roads Reduce Gene Flow in Urban Bird Populations? PLoS One 8 (2013).

  • 26.

    Munshi-South, J. Urban landscape genetics: Canopy cover predicts gene flow between white-footed mouse (Peromyscus leucopus) populations in New York City. Mol. Ecol. 21, 1360–1378 (2012).

  • 27.

    Goldingay, R. L. et al. Fine-scale genetic response to landscape change in a gliding mammal. PLoS One 8 (2013).

  • 28.

    Noreen, A. M. E., Niissalo, M. A., Lum, S. K. Y. & Webb, E. L. Persistence of long-distance, insect-mediated pollen movement for a tropical canopy tree species in remnant forest patches in an urban landscape. Heredity 117, 472–480 (2016).

  • 29.

    Björklund, M., Ruiz, I. & Senar, J. C. Genetic differentiation in the urban habitat: The great tits (Parus major) of the parks of Barcelona city. Biol. J. Linn. Soc. 99, 9–19 (2010).

    • Article
    • Google Scholar
  • 30.

    Beninde, J. et al. Cityscape genetics: structural vs. functional connectivity of an urban lizard population. Mol. Ecol. 25, 4984–5000 (2016).

  • 31.

    Braaker, S., Kormann, U., Bontadina, F. & Obrist, M. K. Prediction of genetic connectivity in urban ecosystems by combining detailed movement data, genetic data and multi-path modelling. Landsc. Urban Plan. 160, 107–114 (2017).

    • Article
    • Google Scholar
  • 32.

    Straub, C., Pichlmüller, F. & Helfer, V. Population genetics of fire salamanders in a pre-Alpine urbanized area (Salzburg, Austria). Salamandra 51, 245–251 (2015).

    • Google Scholar
  • 33.

    Balbi, M. et al. Functional connectivity in replicated urban landscapes in the land snail (Cornu aspersum). Mol. Ecol. 27, 1357–1370 (2018).

  • 34.

    Balkenhol, N., Cushman, S. A., Storfer, A. T. & Waits, L. P. (Eds.). Landscape Genetics. Chichester, UK: John Wiley & Sons, Ltd (2015).

  • 35.

    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: Which pattern of gene flow is most common? Evolution. 68, 1–15 (2013).

  • 36.

    Meirmans, P. G. The trouble with isolation by distance. Molecular Ecology 21, 2839–2846 (2012).

    • Article
    • Google Scholar
  • 37.

    Wang, I. J., Glor, R. E. & Losos, J. B. Quantifying the roles of ecology and geography in spatial genetic divergence. Ecol. Lett. 16, 175–182 (2013).

  • 38.

    Bradburd, G. S., Ralph, P. L. & Coop, G. M. Disentangling the effects of geographic and ecological isolation on genetic differentiation. Evolution 67, 3258–3273 (2013).

  • 39.

    Delibes-Mateos, M., Ferreras, P. & Villafuerte, R. European rabbit population trends and associated factors: A review of the situation in the Iberian Peninsula. Mammal Review 39, 124–140 (2009).

    • Article
    • Google Scholar
  • 40.

    Mitchell-Jones, A. et al. The Atlas of European Mammals. 484 doi:citeulike-article-id:13798298 (1999).

  • 41.

    Delibes-Mateos, M., Delibes, M., Ferreras, P. & Villafuerte, R. Key role of European rabbits in the conservation of the western Mediterranean Basin hotspot. Conservation Biology 22, 1106–1117 (2008).

  • 42.

    White, P. C. L. & Harris, S. In Biological Invasions: Economic and Environmental Costs of Alien Plant, Animal, and Microbe Species 113–149 (2002).

  • 43.

    Cooke, B., Chudleigh, P., Simpson, S. & Saunders, G. The Economic Benefits of the Biological Control of Rabbits in Australia, 1950–2011. Aust. Econ. Hist. Rev. 53, 91–107 (2013).

    • Article
    • Google Scholar
  • 44.

    Lees, A. C. & Bell, D. J. A conservation paradox for the 21st century: The European wild rabbit Oryctolagus cuniculus, an invasive alien and an endangered native species. Mammal Review 38, 304–320 (2008).

    • Article
    • Google Scholar
  • 45.

    Smith, A.T. & Boyer, A. F. Oryctolagus cuniculus. The IUCN Red List of Threatened Species 2007. doi:e.T41291A10414811 (2007).

  • 46.

    Ziege, M. et al. Anpassungsfähigkeit des Europäischen Wildkaninchens entlang eines rural-urbanen Gradienten. Beiträge zur Jagd- und Wildtierforsch. 38, 189–199 (2013).

    • Google Scholar
  • 47.

    Arnold, J. M., Greiser, G., Kampmann, S. & Martin, I. Status und Entwicklung ausgewählter Wildtierarten in Deutschland – Jahresbericht 2014. Wildtier-Informations- system der Länder Deutschlands (WILD) 44, https://doi.org/10.5089/9781498350891.017 (2015).

  • 48.

    Ziege, M. et al. Importance of latrine communication in European rabbits shifts along a rural-to-urban gradient. BMC Ecol. 16 (2016).

  • 49.

    Ziege, M. et al. From multifamily residences to studio apartments: Shifts in burrow structures of European rabbits along a rural-to-urban gradient. J. Zool. 295, 286–293 (2015).

    • Article
    • Google Scholar
  • 50.

    Römer-Büchner, B. J. Verzeichniss der Steine und Thiere welche in dem Gebiete der freien Stadt Frankfurt. J.D. Sauerländer (1827).

  • 51.

    Brinkhoff, T. City population. Population Statistics for Countries, Administrative Areas, Cities and Agglomerations—Interactive Maps and Charts; 2015 (2015).

  • 52.

    Alberti, M., Botsford, E. & Cohen, A. In Avian Ecology and Conservation in an Urbanizing World 89–115, https://doi.org/10.1007/978-1-4615-1531-9_5 (2001).

    • Google Scholar
  • 53.

    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

  • 54.

    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).

  • 55.

    Rice, W. R. A consensus combined p-value test and the family-wide significance of component tests. Biometrics 46, 303–308 (1990).

  • 56.

    Peakall, R. & Smouse, P. E. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539 (2012).

  • 57.

    Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).

    • Article
    • Google Scholar
  • 58.

    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution (N. Y). 38, 1358 (1984).

    • CAS
    • Google Scholar
  • 59.

    Piry S, Luikart G, Cornuet JM BOTTLENECK: A computerprogram for detecting recent reductions in the effective population size using allele frequency data. J. Hered 90(4) 502–503 (1999).

  • 60.

    R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, http://www.R-project.org (2013).

  • 61.

    Jombart, T. et al. Package ‘adegenet’. Bioinforma. Appl. Note 24, 1403–1405 (2008).

  • 62.

    Jombart, T. & Devillard, S. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet, https://doi.org/10.1186/1471-2156-11-94 (2010)

  • 63.

    Kalinowski, S. T. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: Simulations and implications for human population structure. Heredity (Edinb). 106, 625–632 (2011).

  • 64.

    Wilson, G. A. & Rannala, B. Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163, 1177–1191 (2003).

  • 65.

    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: A multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution (N. Y). 67, 3403–3411 (2013).

    • Google Scholar
  • 66.

    Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

    • Article
    • Google Scholar
  • 67.

    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    • Article
    • Google Scholar
  • 68.

    Munshi-South, J. & Kharchenko, K. Rapid, pervasive genetic differentiation of urban white-footed mouse (Peromyscus leucopus) populations in New York City. Mol. Ecol. 19, 4242–4254 (2010).

  • 69.

    Calvete, C., Estrada, R., Angulo, E. & Cabezas-Ruiz, S. Habitat factors related to wild rabbit conservation in an agricultural landscape. Landsc. Ecol. 19, 533–544 (2004).

    • Article
    • Google Scholar
  • 70.

    Calvete, C., Pelayo, E. & Sampietro, J. Habitat factors related to wild rabbit population trends after the initial impact of rabbit haemorrhagic disease. Wildl. Res. 33, 467–474 (2006).

    • Article
    • Google Scholar
  • 71.

    Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science, https://doi.org/10.1126/science.1057544 (2001).

  • 72.

    Jongman, R. H. G. Homogenisation and fragmentation of the European landscape: Ecological consequences and solutions. Landsc. Urban Plan. 58, 211–221 (2002).

    • Article
    • Google Scholar
  • 73.

    Richardson, B. J., Hayes, R. A., Wheeler, S. H. & Yardin, M. R. Social structures, genetic structures and dispersal strategies in Australian rabbit (Oryctolagus cuniculus) populations. Behav. Ecol. Sociobiol. 51, 113–121 (2002).

    • Article
    • Google Scholar
  • 74.

    Parer, I. Dispersal of the Wild Rabbit (Oryctolagus cuniclus) at Urana in New South Wales. Aust. Wildl. Res. 9, 427–441 (1982).

    • Article
    • Google Scholar
  • 75.

    Douglas, C. W. Movements and longevity in the rabbit. Noxious Weed Destr. Board Res. Bull. 12, 71–72 (1969).

    • Google Scholar
  • 76.

    Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & De Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Molecular Ecology 22, 5983–5999 (2013).

    • Article
    • Google Scholar
  • 77.

    Davey, J. et al. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet. 12, 499–510 (2011).

  • 78.

    DeFries, R. & Eshleman, K. N. Land-use change and hydrologic processes: a major focus for the future. Hydrol. Process, https://doi.org/10.1002/hyp.5584 (2004).

  • 79.

    Stodart, E. & Myers, K. A comparison of behaviour, reproduction, and mortality of wild and domestic rabbits in confined population. CSIRO Wildl. Res. 9, 144 (1964).

    • Article
    • Google Scholar
  • 80.

    Carneiro, M. et al. The genetic structure of domestic rabbits. Mol. Biol. Evol. 28, 1801–16 (2011).

  • 81.

    Hurst, C. C. Experimental Studies on Heredity in Rabbits. J. Linn. Soc. London, Zool. 29, 283–324 (1905).

    • Article
    • Google Scholar
  • 82.

    DiVincenti, L., Rehrig, A. N. & Rehrig, A. N. The Social Nature of European Rabbits (Oryctolagus cuniculus). J. Am. Assoc. Lab. Anim. Sci. 55, 729–736 (2016).


  • Source: Ecology - nature.com

    Brainstorming energy-saving hacks on Satori, MIT’s new supercomputer

    Maintaining the equipment that powers our world