Spitze, K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139, 229–247 (1992).
Schoeppner, N. M. & Relyea, R. A. Damage, digestion, and defence: The roles of alarm cues and kairomones for inducing prey defences. Ecol. Lett. 8, 505–512 (2005).
Relyea, R. A. et al. Phylogenetic patterns of trait and trait plasticity evolution: Insights from amphibian embryos. Evolution Int. J. Organic Evolut. 72, 663–678 (2018).
Reger, J., Lind, M. I., Robinson, M. R. & Beckerman, A. P. Predation drives local adaptation of phenotypic plasticity. Nat. Ecol. Evolut. 2, 100–107 (2018).
Nunes, A. L., Richter-Boix, A., Laurila, A. & Rebelo, R. Do anuran larvae respond behaviourally to chemical cues from an invasive crayfish predator? A community-wide study. Oecologia 171, 115–127 (2013).
Johnston, C. A., Wilson Rankin, E. E. & Gruner, D. S. Foraging connections: Patterns of prey use linked to invasive predator diel movement. PLoS ONE 13, e0201883 (2018).
Hollander, J. & Bourdeau, P. E. Evidence of weaker phenotypic plasticity by prey to novel cues from non-native predators. Ecol. Evolut. 6, 5358–5365 (2016).
Relyea, R. A. Trait-mediated indirect effects in larval anurans: Reversing competition with the threat of predation. Ecology 81, 2278–2289 (2000).
Gallie, J. A., Mumme, R. L. & Wissinger, S. A. Experience has no effect on the development of chemosensory recognition of predators by tadpoles of the American toad, Bufo americanus. Herpetologica 57, 376–383 (2001).
McCollum, S. A. & Leimberger, J. D. Predator-induced morphological changes in an amphibian: Predation by dragonflies affects tadpole shape and color. Oecologia 109, 615–621 (1997).
Relyea, R. A. Morphological and behavioral plasticity of larval anurans in response to different predators. Ecology 82, 523–540 (2001).
Fraker, M. E. The effect of hunger on the strength and duration of the antipredator behavioral response of green frog (Rana clamitans) tadpoles. Behav. Ecol. Sociobiol. 62, 1201–1205 (2008).
VanBuskirk, J. & Relyea, R. A. Selection for phenotypic plasticity in Rana sylvatica tadpoles. Biol. J. Linn. Soc. 65, 301–328 (1998).
Kishida, O. & Nishimura, K. Multiple inducible defences against multiple predators in the anuran tadpole, Rana pirica. Evolut. Ecol. Res. 7, 619–631 (2005).
Van Buskirk, J., McCollum, S. A. & Werner, E. E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution Int. J. Organic Evolut. 51, 1983–1992 (1997).
Kishida, O., Trussell, G. C., Mougi, A. & Nishimura, K. Evolutionary ecology of inducible morphological plasticity in predator-prey interaction: Toward the practical links with population ecology. Popul. Ecol. 52, 37–46 (2010).
Mori, T. et al. The constant threat from a non-native predator increases tail muscle and fast-start swimming performance in Xenopus tadpoles. Biol. Open 6, 1726–1733 (2017).
Middlemis Maher, J., Werner, E. E. & Denver, R. J. Stress hormones mediate predator-induced phenotypic plasticity in amphibian tadpoles. Proc. Biol. Sci. 280, 20123075 (2013).
Adamec, R., Kent, P., Anisman, H., Shallow, T. & Merali, Z. Neural plasticity, neuropeptides and anxiety in animals—Implications for understanding and treating affective disorder following traumatic stress in humans. Neurosci. Biobehav. Rev. 23, 301–318 (1998).
Figueiredo, H. F., Bodie, B. L., Tauchi, M., Dolgas, C. M. & Herman, J. P. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo-pituitary-adrenocortical axis. Endocrinology 144, 5249–5258 (2003).
Jongren, M., Westander, J., Natt, D. & Jensen, P. Brain gene expression in relation to fearfulness in female red junglefowl (Gallus gallus). Genes Brain Behav. 9, 751–758 (2010).
Sanogo, Y. O., Hankison, S., Band, M., Obregon, A. & Bell, A. M. Brain transcriptomic response of threespine sticklebacks to cues of a predator. Brain Behav. Evol. 77, 270–285 (2011).
Fraser, B. A., Weadick, C. J., Janowitz, I., Rodd, F. H. & Hughes, K. A. Sequencing and characterization of the guppy (Poecilia reticulata) transcriptome. BMC Genomics 12, 202 (2011).
Drew, R. E. et al. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 13, 323 (2012).
Cinel, S. D. & Taylor, S. J. Prolonged bat call exposure induces a broad transcriptional response in the male fall armyworm (Spodoptera frugiperda; Lepidoptera: Noctuidae) brain. Front. Behav. Neurosci. 13, 36 (2019).
Miksys, S. & Tyndale, R. F. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab. Rev. 36, 313–333 (2004).
Ekins, S. & Wrighton, S. A. The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31, 719–754 (1999).
Hiroi, T. et al. Progesterone oxidation by cytochrome P450 2D isoforms in the brain. Endocrinology 142, 3901–3908 (2001).
Seliskar, M. & Rozman, D. Mammalian cytochromes P450–importance of tissue specificity. Biochim. Biophys. Acta 1770, 458–466 (2007).
Borkum, J. M. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 56, 12–35 (2016).
Brown, D. R., Schulz-Schaeffer, W. J., Schmidt, B. & Kretzschmar, H. A. Prion protein-deficient cells show altered response to oxidative stress due to decreased SOD-1 activity. Exp. Neurol. 146, 104–112 (1997).
Paitel, E., Fahraeus, R. & Checler, F. Cellular prion protein sensitizes neurons to apoptotic stimuli through Mdm2-regulated and p53-dependent caspase 3-like activation. J. Biol. Chem. 278, 10061–10066 (2003).
Kannan, K. & Jain, S. K. Oxidative stress and apoptosis. Pathophysiology 7, 153–163 (2000).
Klingenberg, M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 1778, 1978–2021 (2008).
Klumpe, I. et al. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J. Mol. Med. (Berlin, Germany) 94, 645–653 (2016).
Avila, D. V. et al. Phosphodiesterase 4b expression plays a major role in alcohol-induced neuro-inflammation. Neuropharmacology 125, 376–385 (2017).
You, T. et al. Roflupram, a phosphodiesterase 4 inhibitor, suppresses inflammasome activation through autophagy in microglial cells. ACS Chem. Neurosci. 8, 2381–2392 (2017).
Glover, E. M., Ressler, K. J. & Davis, M. Differing effects of systemically administered rapamycin on consolidation and reconsolidation of context vs cued fear memories. Learn. Mem. (Cold Spring Harbor, N.Y.) 17, 577–581 (2010).
Parsons, R. G., Gafford, G. M. & Helmstetter, F. J. Translational control via the mammalian target of rapamycin pathway is critical for the formation and stability of long-term fear memory in amygdala neurons. J. Neurosci. 26, 12977–12983 (2006).
Slipczuk, L. et al. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS ONE 4, e6007 (2009).
Fifield, K. et al. Time-dependent effects of rapamycin on consolidation of predator stress-induced hyperarousal. Behav. Brain Res. 286, 104–111 (2015).
Sidrauski, C. et al. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife 2, e00498 (2013).
Dubey, J., Ratnakaran, N. & Koushika, S. P. Neurodegeneration and microtubule dynamics: Death by a thousand cuts. Front. Cell. Neurosci. 9, 343 (2015).
Penazzi, L., Bakota, L. & Brandt, R. Microtubule dynamics in neuronal development, plasticity, and neurodegeneration. Int. Rev. Cell Mol. Biol. 321, 89–169 (2016).
Govek, E. E., Newey, S. E. & Van Aelst, L. The role of the Rho GTPases in neuronal development. Genes Dev. 19, 1–49 (2005).
Hoogenraad, C. C. & Bradke, F. Control of neuronal polarity and plasticity—A renaissance for microtubules?. Trends Cell Biol. 19, 669–676 (2009).
Heasman, S. J. & Ridley, A. J. Mammalian Rho GTPases: New insights into their functions from in vivo studies. Nat. Rev. Mol. Cell Biol. 9, 690–701 (2008).
Vargas, J. P., Lopez, J. C. & Portavella, M. What are the functions of fish brain pallium?. Brain Res. Bull. 79, 436–440 (2009).
Portavella, M. & Vargas, J. P. Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. Eur. J. Neurosci. 21, 2800–2806 (2005).
Fletcher, M. L. Olfactory aversive conditioning alters olfactory bulb mitral/tufted cell glomerular odor responses. Front. Syst. Neurosci. 6, 16 (2012).
Kass, M. D., Rosenthal, M. C., Pottackal, J. & McGann, J. P. Fear learning enhances neural responses to threat-predictive sensory stimuli. Science 342, 1389–1392 (2013).
Laberge, F. & Roth, G. Organization of the sensory input to the telencephalon in the fire-bellied toad, Bombina orientalis. J. Comp. Neurol. 502, 55–74 (2007).
Laberge, F., Muhlenbrock-Lenter, S., Dicke, U. & Roth, G. Thalamo-telencephalic pathways in the fire-bellied toad Bombina orientalis. J. Comp. Neurol. 508, 806–823 (2008).
54Nieuwenhuys, R., Donkelaar, H. J. t. & Nicholson, C. The Central Nervous System of Vertebrates. Vol. 3 (Springer, New York, 1998).
Grossman, E. N., Giurumescu, C. A. & Chisholm, A. D. Mechanisms of ephrin receptor protein kinase-independent signaling in amphid axon guidance in Caenorhabditis elegans. Genetics 195, 899–913 (2013).
Borasio, G. D. et al. ras p21 protein promotes survival and fiber outgrowth of cultured embryonic neurons. Neuron 2, 1087–1096 (1989).
Sloniowski, S. & Ethell, I. M. Looking forward to EphB signaling in synapses. Semin. Cell Dev. Biol. 23, 75–82 (2012).
Cruz, E. et al. Infralimbic EphB2 modulates fear extinction in adolescent rats. J. Neurosci. 35, 12394–12403 (2015).
Mayr, B. & Montminy, M. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell Biol. 2, 599–609 (2001).
Watkins, J. C. & Evans, R. H. Excitatory amino acid transmitters. Annu. Rev. Pharmacol. Toxicol. 21, 165–204 (1981).
61Garcia-Nafria, J., Herguedas, B., Watson, J. F. & Greger, I. H. The dynamic AMPA receptor extracellular region: A platform for synaptic protein interactions. J. Physiol. (2016).
Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12, 5447–5454 (1992).
Barrett, T. D. et al. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)- 1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor. Mol. Pharmacol. 79, 910–920 (2011).
Sugiyama, M. et al. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol. Open 1, 1035–1042 (2012).
Kawamoto, T. Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch. Histol. Cytol. 66, 123–143 (2003).
Komatsu, Y., Kishigami, S. & Mishina, Y. In situ hybridization methods for mouse whole mounts and tissue sections with and without additional beta-galactosidase staining. Methods Mol. Biol. (Clifton, N.Y.) 1092, 1–15 (2014).
Mori, T. et al. Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145 (2005).
Source: Ecology - nature.com