in

Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications

  • 1.

    Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Jiao N, et al. Present and future global distributions of the marine Cyanobacteria Prochlrococcus and Synechococcus. Proc Natl Acad Sci. 2013;110:9824–9.

    CAS  PubMed  Google Scholar 

  • 2.

    Li WKW, Url S. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: Measurements from flow cytometric sorting. Limnol Oceanogr. 1994;39:169–75.

    CAS  Google Scholar 

  • 3.

    Dvořák P, Casamatta DA, Poulíčková A, Hašler P, Ondřej V, Sanges R. Synechococcus: 3 billion years of global dominance. Mol Ecol. 2014;23:5538–51.

    PubMed  Google Scholar 

  • 4.

    Morel A, Ahn YH, Partensky F, Vaulot D, Claustre H. Prochlorococcus and Synechococcus: a comparative study of their optical properties in relation to their size and pigmentation. J Mar Res. 1993;51:617–49.

    CAS  Google Scholar 

  • 5.

    Partensky F, Blanchot J, Vaulot D. Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. Bull l’Institut océanographique. 1999;19:457–75.

    Google Scholar 

  • 6.

    Biller SJ, Berube PM, Lindell D, Chisholm SW. Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13:13–27.

    CAS  PubMed  Google Scholar 

  • 7.

    Sun Z, Blanchard JL. Strong Genome-Wide Selection Early in the Evolution of Prochlorococcus Resulted in a Reduced Genome through the Loss of a Large Number of Small Effect Genes. PLoS ONE. 2014;9:e88837.

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Larsson J, Nylander JAA, Bergman B. Genome fluctuations in cyanobacteria reflect evolutionary, developmental and adaptive traits. BMC Evol Biol. 2011;11:187.

    PubMed  PubMed Central  Google Scholar 

  • 9.

    Dufresne A, Garczarek L, Partensky F. Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol. 2005;6:R14.1–R14.10.

    Google Scholar 

  • 10.

    Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, et al. Ecological genomics of marine picocyanobacteria. Microb Mol Biol Rev. 2009;73:249–99.

    CAS  Google Scholar 

  • 11.

    Scanlan DJ. Marine Picocyanobacteria. In: Whitton B. (eds). Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Netherlands: Dordrecht, Netherlands 2012, pp. 503–33.

  • 12.

    Sánchez-Baracaldo P, Hayes PK, Blank CE. Morphological and habitat evolution in the Cyanobacteria using a compartmentalization approach. Geobiology. 2005;3:145–65.

    Google Scholar 

  • 13.

    Wang K, Wommack KE, Chen F. Abundance and distribution of Synechococcus spp. and cyanophages in the Chesapeake Bay. Appl Environ Microbiol. 2011;77:7459–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Callieri C. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshw Rev. 2008;1:1–28.

    Google Scholar 

  • 15.

    Stockner JG. Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr. 1988;33:765–75.

    CAS  Google Scholar 

  • 16.

    Callieri C, Stockner JG. Freshwater autotrophic picoplankton: a review. J Limnol. 2002;61:1–14.

    Google Scholar 

  • 17.

    Honda D, Yokota A, Sugiyama J. Detection of seven major evolutionary lineages in cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol. 1999;48:723–39.

    CAS  PubMed  Google Scholar 

  • 18.

    Rippka R, Deruelles J, Waterbury JB. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol. 1979;111:1–61.

    Google Scholar 

  • 19.

    Wilmotte AMR, Stam WT. Genetic relationships among cyanobacterial strains originally designated as ‘Anacystis nidulans’ and some other Synechococcus strains. J Gen Microbiol. 1984;130:2737–40.

    Google Scholar 

  • 20.

    Coutinho F, Tschoeke DA, Thompson F. Comparative genomics of Synechococcus and proposal of the new genus Parasynechococcus. PeerJ. 2016;4:e1522 1–18.

    Google Scholar 

  • 21.

    Robertson BR, Tezuka N, Watanabe MM. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol. 2001;51:861–71.

    CAS  PubMed  Google Scholar 

  • 22.

    Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, et al. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol. 2008;10:147–61.

    PubMed  Google Scholar 

  • 23.

    Rocap G, Distel DL, Waterbury JB, Chisholm SW. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol. 2002;68:1180–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Toledo G, Palenik B. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol. 1997;63:4298–303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 25.

    Fuller NJ, Marie D, Partensky F, Vaulot D, Post AF, Scanlan DJ. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ Microbiol. 2003;69:2430–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 26.

    Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, et al. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 2008;9:R90.

    PubMed  PubMed Central  Google Scholar 

  • 27.

    Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 2012;6:285–97.

    CAS  PubMed  Google Scholar 

  • 28.

    Callieri C, Coci M, Corno G, Macek M, Modenutti B, Balseiro E, et al. Phylogenetic diversity of nonmarine picocyanobacteria. FEMS Microbiol Ecol. 2013;85:293–301.

    CAS  PubMed  Google Scholar 

  • 29.

    Crosbie ND, Pockl M, Weisse T. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl Environ Microbiol. 2003;69:5716–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Jasser I, Królicka A, Karnkowska-Ishikawa A. A novel phylogenetic clade of picocyanobacteria from the Mazurian lakes (Poland) reflects the early ontogeny of glacial lakes. FEMS Microbiol Ecol. 2011;75:89–98.

    CAS  PubMed  Google Scholar 

  • 31.

    Ernst A, Becker S, Wollenzien UIA, Postius C. Ecosystem-dependent adaptive radiations of picocyanobacteria inferred from 16S rRNA and ITS-1 sequence analysis. Microbiology. 2003;149:217–28.

    CAS  PubMed  Google Scholar 

  • 32.

    Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–42.

    CAS  PubMed  Google Scholar 

  • 33.

    Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, et al. Genome sequence of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci. 2006;103:13555–9.

    CAS  PubMed  Google Scholar 

  • 34.

    Stuart RK, Dupont CL, Johnson DA, Paulsen IT, Palenik B. Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Microbiol. 2009;75:5047–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 35.

    Stuart RK, Brahamsha B, Busby K, Palenik B. Genomic island genes in a coastal marine Synechococcus strain confer enhanced tolerance to copper and oxidative stress. ISME J. 2013;7:1139–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 36.

    Fucich D, Marsan D, Sosa A, Chen F. Complete genome sequence of Subcluster 5.2 Synechococcus sp. strain CB0101, isolated from the Chesapeake Bay. Microbiol Resour Announc. 2019;8:6–8.

    Google Scholar 

  • 37.

    Marsan D, Place A, Fucich D, Chen F. Toxin-antitoxin systems in estuarine Synechococcus strain CB0101 and their transcriptomic responses to environmental stressors. Front Microbiol. 2017;8:1–11.

    Google Scholar 

  • 38.

    Page R, Peti W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol. 2016;12:208–14.

    CAS  PubMed  Google Scholar 

  • 39.

    Unterholzner SJ, Poppenberger B, Rozhon W. Toxin-antitoxin systems. Mob Genet Elem. 2013;3:e26219 1–13.

    Google Scholar 

  • 40.

    Makarova KS, Wolf YI, Koonin EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct. 2009;4:19.

    PubMed  PubMed Central  Google Scholar 

  • 41.

    Kaneko T, Nakamura Y, Sasamoto S, Watanabe A, Kohara M, Matsumoto M, et al. Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res. 2003;10:221–8.

    CAS  PubMed  Google Scholar 

  • 42.

    Chen Y, Holtman CK, Magnuseon RD, Youderian PA, Golden SS. The complete sequence and functional analysis of pANL, the large plasmid of the unicellular freshwater cyanobacterium Synechococcus elongatus PCC 7942. Plasmid. 2011;23:1–7.

    Google Scholar 

  • 43.

    Chen F, Wang K, Kan J, Suzuki MT, Wommack KE. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl Environ Microbiol. 2006;72:2239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Xie Y, Wei Y, Shen Y, Li X, Zhou H, Tai C, et al. TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Res. 2018;46:D749–D753.

    CAS  PubMed  Google Scholar 

  • 45.

    O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D745.

    PubMed  Google Scholar 

  • 46.

    Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, Bolton E, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2017;45:D12–D17.

    CAS  Google Scholar 

  • 47.

    Nordberg H, Cantor M, Dusheyko S, Hua S, Poliakov A, Shabalov I, et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 2014;42:26–31.

    Google Scholar 

  • 48.

    Shao Y, Harrison EM, Bi D, Tai C, He X, Ou HY, et al. TADB: a web-based resource for Type 2 toxin-antitoxin loci in bacteria and archaea. Nucleic Acids Res. 2011;39:606–11.

    Google Scholar 

  • 49.

    Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45:D200–D203.

    CAS  PubMed  Google Scholar 

  • 50.

    R Core Team. R: A Language and Environment for Statistical Computing. 2018. Vienna, Austria.

  • 51.

    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

    Google Scholar 

  • 52.

    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 53.

    Winther KS, Gerdes K. Enteric virulence associated protein VapC inhibits translation by cleavage of initiator tRNA. Prok Natl Acad Sci. 2011;108:7403–7.

    CAS  Google Scholar 

  • 54.

    Harms A, Brodersen DE, Matarai N, Gerdes K. Toxins,targets,and triggers: an overview of toxin-antitoxin biology. Mol Cell. 2018;70:768–84.

    CAS  PubMed  Google Scholar 

  • 55.

    Kopfmann S, Roesch S, Hess W. Type II toxin–antitoxin systems in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Toxins. 2016;8:228.

    PubMed Central  Google Scholar 

  • 56.

    Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drze P, Van Melderen L. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acids Res. 2011;39:5513–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 57.

    Xia K, Bao H, Zhang F, Linhardt RJ, Liang X. Characterization and comparative analysis of toxin – antitoxin systems in Acetobacter pasteurianus. J Ind Microbiol Biotechnol. 2019;46:869–82.

    CAS  PubMed  Google Scholar 

  • 58.

    Biller SJ, Berube PM, Berta-Thompson JW, Kelly L, Roggensack SE, Awad L, et al. Genomes of diverse isolates of the marine cyanobacterium Prochlorococcus. Sci Data. 2014;1:1–11.

    Google Scholar 

  • 59.

    Palenik B, Barahamsha B, Larimer FW, Land M, Hauser L, Chain P, et al. The genome of a motile marine Synechococcus. Nature. 2003;424:1037–42.

    CAS  PubMed  Google Scholar 

  • 60.

    Scanlan DJ, West NJ. Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol. 2002;40:1–12.

    CAS  PubMed  Google Scholar 

  • 61.

    McWilliam H, Li W, Uludag M, Squizzato S, Park YM, Buso N, et al. Analysis tool web services from the EMBL-EBI. Nucleic Acids Res. 2013;41:W597–W600.

    PubMed  PubMed Central  Google Scholar 

  • 62.

    Sevin EW, Barloy-Hubler F. RASTA-bacteria: a web-based tool for identifying toxin-antitoxin loci in prokaryotes. Genome Biol. 2007;8:R155.1–R155.14.

    Google Scholar 

  • 63.

    Robson J, McKenzie JL, Cursons R, Cook GM, Arcus VL. The vapBC operon from mycobacterium smegmatis Is an autoregulated toxin-antitoxin module that controls growth via inhibition of translation. J Mol Biol. 2009;390:353–67.

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    For student researchers, no pause for the pandemic

    Urban food subsidies reduce natural food limitations and reproductive costs for a wetland bird