in

Rapid transfer of oxygen to the deep ocean mediated by bubbles

  • 1.

    Wüst, G. Stratosphere of the Atlantic Ocean (Amerind Company, 1978).

  • 2.

    Reid, J. L. & Mantyla, A. W. On the mid-depth circulation of the North Pacific Ocean. J. Phys. Oceanogr. 8, 946–951 (1978).

    • Article
    • Google Scholar
  • 3.

    Manning, A. & Keeling, R. F. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B: Chem. Phys. Meteorol. 58, 95–116 (2006).

    • Article
    • Google Scholar
  • 4.

    Bender, M. L. et al. Atmospheric O2/N2 changes, 1993–2002: implications for the partitioning of fossil fuel CO2 sequestration. Glob. Biogeochem. Cycles 19, GB4017 (2005).

    • Article
    • Google Scholar
  • 5.

    Keeling, R. F., Najjar, R. P., Bender, M. L. & Tans, P. P. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycles 7, 37–67 (1993).

    • Article
    • Google Scholar
  • 6.

    Keeling, R. F. & Garcia, H. E. The change in oceanic O2 inventory associated with recent global warming. Proc. Natl Acad. Sci. USA 99, 7848–7853 (2002).

    • Article
    • Google Scholar
  • 7.

    Riley, G. A. Oxygen, phosphate, and nitrate in the Atlantic Ocean. Bull. Bingham Oceanogr. Coll. 13, 1 (1951).

    • Google Scholar
  • 8.

    Jenkins, W. & Goldman, J. Seasonal oxygen cycling and primary production in the Sargasso Sea. J. Mar. Res. 43, 465–491 (1985).

    • Article
    • Google Scholar
  • 9.

    Emerson, S. R. & Bushinsky, S. Oxygen concentrations and biological fluxes in the open ocean. Oceanography 27, 168–171 (2014).

    • Article
    • Google Scholar
  • 10.

    Stramma, L., Schmidtko, S., Levin, L. A. & Johnson, G. C. Ocean oxygen minima expansions and their biological impacts. Deep Sea Res. Part I: Oceanogr. Res. Pap. 57, 587–595 (2010).

    • Article
    • Google Scholar
  • 11.

    Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    • Article
    • Google Scholar
  • 12.

    Ito, T., Minobe, S., Long, M. C. & Deutsch, C. Upper ocean O2 trends: 1958–2015. Geophys. Res. Lett. 44, 4214–4223 (2017).

    • Article
    • Google Scholar
  • 13.

    Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    • Article
    • Google Scholar
  • 14.

    Keeling, R. F., Piper, S. C. & Heimann, M. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218–221 (1996).

    • Article
    • Google Scholar
  • 15.

    Stephens, B. B. et al. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Glob. Biogeochem. Cycles 12, 213–230 (1998).

    • Article
    • Google Scholar
  • 16.

    Nevison, C. D. et al. Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data. Biogeosciences 12, 193–208 (2015).

    • Article
    • Google Scholar
  • 17.

    Nevison, C. D. et al. Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: present-day performance and future projection. Geophys. Res. Lett. 43, 2077–2085 (2016).

    • Article
    • Google Scholar
  • 18.

    Hamme, R. C. & Keeling, R. F. Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen. Tellus B: Chem. Phys. Meteorol. 60, 706–717 (2008).

    • Article
    • Google Scholar
  • 19.

    Resplandy, L. et al. Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Clim. Dyn. 47, 3335–3357 (2016).

    • Article
    • Google Scholar
  • 20.

    Naegler, T., Ciais, P., Orr, J. C., Aumont, O. & Rödenbeck, C. On evaluating ocean models with atmospheric potential oxygen. Tellus B 59, 138–156 (2007).

    • Article
    • Google Scholar
  • 21.

    Gruber, N., Gloor, M., Fan, S. & Sarmiento, J. L. Air–sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Glob. Biogeochem. Cycles 15, 783–803 (2001).

    • Article
    • Google Scholar
  • 22.

    Orr, J. C. et al. Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP). Geosci. Model Dev. 10, 2169–2199 (2017).

    • Article
    • Google Scholar
  • 23.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992).

    • Article
    • Google Scholar
  • 24.

    Large, W. G. & Yeager, S. The global climatology of an interannually varying air–sea flux data set. Clim. Dyn. 33, 341–364 (2009).

    • Article
    • Google Scholar
  • 25.

    Garcia, H. E. & Keeling, R. F. On the global oxygen anomaly and air–sea flux. J. Geophys. Res. 106, 31155–31166 (2001).

    • Article
    • Google Scholar
  • 26.

    Najjar, R. G. & Keeling, R. F. Mean annual cycle of the air–sea oxygen flux: a global view. Glob. Biogeochem. Cycles 14, 573–584 (2000).

    • Article
    • Google Scholar
  • 27.

    Wallace, D. & Wirick, C. Large air–sea gas fluxes associated with breaking waves. Nature 356, 694–696 (1992).

    • Article
    • Google Scholar
  • 28.

    McNeil, C. & D’Asaro, E. Parameterization of air–sea gas fluxes at extreme wind speeds. J. Mar. Syst. 66, 110–121 (2007).

    • Article
    • Google Scholar
  • 29.

    Bell, T. G. et al. Estimation of bubble-mediated air–sea gas exchange from concurrent DMS and CO2 transfer velocities at intermediate–high wind speeds. Atmos. Chem. Phys. 17, 9019–9033 (2017).

    • Article
    • Google Scholar
  • 30.

    Plant, J. N. et al. Net community production at Ocean Station Papa observed with nitrate and oxygen sensors on profiling floats. Glob. Biogeochem. Cycles 30, 859–879 (2016).

    • Article
    • Google Scholar
  • 31.

    Bushinsky, S. M., Gray, A. R., Johnson, K. S. & Sarmiento, J. L. Oxygen in the Southern Ocean from Argo floats: determination of processes driving air–sea fluxes. J. Geophys. Res. Oceans 122, 8661–8682 (2017).

    • Article
    • Google Scholar
  • 32.

    Koelling, J., Wallace, D. W. R., Send, U. & Karstensen, J. Intense oceanic uptake of oxygen during 2014–2015 winter convection in the Labrador Sea. Geophys. Res. Lett. 44, 7855–7864 (2017).

    • Article
    • Google Scholar
  • 33.

    Wolf, M. K., Hamme, R. C., Gilbert, D., Yashayaev, I. & Thierry, V. Oxygen saturation surrounding deep water formation events in the Labrador Sea from Argo-O2 data. Glob. Biogeochem. Cycles 32, 635–653 (2018).

    • Article
    • Google Scholar
  • 34.

    Emerson, S., Yang, B., White, M. & Cronin, M. Air–sea gas transfer: determining bubble fluxes with in situ N2 observations. J. Geophys. Res. Oceans 124, 2716–2727 (2019).

    • Article
    • Google Scholar
  • 35.

    Sun, D., Ito, T. & Bracco, A. Oceanic uptake of oxygen during deep convection events through diffusive and bubble-mediated gas exchange. Glob. Biogeochem. Cycles 31, 1579–1591 (2017).

    • Article
    • Google Scholar
  • 36.

    Stanley, R. H. R., Jenkins, W. J., Lott, D. E. & Doney, S. C. Noble gas constraints on air–sea gas exchange and bubble fluxes. J. Geophys. Res. 114, C11020 (2009).

    • Article
    • Google Scholar
  • 37.

    Argo Float Data and Metadata from Global Data Assembly Centre (Argo GDAC) (SEANOE, 2000).

  • 38.

    Körtzinger, A., Schimanski, J., Send, U. & Wallace, D. The ocean takes a deep breath. Science 306, 1337 (2004).

    • Article
    • Google Scholar
  • 39.

    Woolf, D. K. in The Sea Surface and Global Change (eds Liss, P. S. & Duce, R. A.) 173–206 (Cambridge Univ. Press, 1997).

  • 40.

    Khatiwala, S. et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013).

    • Article
    • Google Scholar
  • 41.

    Resplandy, L., Séférian, R. & Bopp, L. Natural variability of CO2 and O2 fluxes: what can we learn from centuries-long climate models simulations? J. Geophys. Res. Oceans 120, 384–404 (2015).

    • Article
    • Google Scholar
  • 42.

    Landschützer, P., Gruber, N., Bakker, D. C. E. & Schuster, U. Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014).

    • Article
    • Google Scholar
  • 43.

    Körtzinger, A., Send, U., Wallace, D. W. R., Karstensen, J. & DeGrandpre, M. Seasonal cycle of O2 and pCO2 in the central Labrador Sea: atmospheric, biological, and physical implications. Glob. Biogeochem. Cycles 22, GB1014 (2008).

    • Article
    • Google Scholar
  • 44.

    Martz, T. R., DeGrandpre, M. D., Strutton, P. G., McGillis, W. R. & Drennan, W. M. Sea surface pCO2 and carbon export during the Labrador Sea spring–summer bloom: an in situ mass balance approach. J. Geophys. Res. 114, C09008 (2009).

    • Article
    • Google Scholar
  • 45.

    DeGrandpre, M. D., Körtzinger, A., Send, U., Wallace, D. W. R. & Bellerby, R. G. J. Uptake and sequestration of atmospheric CO2 in the Labrador Sea deep convection region. Geophys. Res. Lett. 33, L21S03 (2006).

    • Article
    • Google Scholar
  • 46.

    Liang, J. et al. Parameterizing bubble‐mediated air–sea gas exchange and its effect on ocean ventilation. Glob. Biogeochem. Cycles 27, 894–905 (2013).

    • Article
    • Google Scholar
  • 47.

    Vagle, S., McNeil, C. & Steiner, N. Upper ocean bubble measurements from the NE Pacific and estimates of their role in air–sea gas transfer of the weakly soluble gases nitrogen and oxygen. J. Geophys. Res. Oceans 115, C12050 (2010).

    • Article
    • Google Scholar
  • 48.

    Li, M. et al. Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean. J. Atmos. Ocean. Technol. 30, 1842–1853 (2013).

    • Article
    • Google Scholar
  • 49.

    Yang, B., Emerson, S. R. & Bushinsky, S. M. Annual net community production in the subtropical Pacific Ocean from in situ oxygen measurements on profiling floats. Glob. Biogeochem. Cycles 31, 728–744 (2017).

    • Article
    • Google Scholar
  • 50.

    Takahashi, T. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II: Topical Stud. Oceanogr. 56, 554–577 (2009).

    • Article
    • Google Scholar
  • 51.

    Fröb, F. et al. Irminger Sea deep convection injects oxygen and anthropogenic carbon to the ocean interior. Nat. Commun. 7, 13244 (2016).

    • Article
    • Google Scholar
  • 52.

    Bernardello, R., Marinov, I., Palter, J. B., Galbraith, E. D. & Sarmiento, J. L. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 41, 7262–7269 (2014).

    • Article
    • Google Scholar
  • 53.

    Oltmanns, M., Karstensen, J. & Fischer, J. Increased risk of a shutdown of ocean convection posed by warm North Atlantic summers. Nat. Clim. Change 8, 300–304 (2018).

    • Article
    • Google Scholar
  • 54.

    Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K. & Bamber, J. L. Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean. Nat. Geosci. 9, 523–527 (2016).

    • Article
    • Google Scholar
  • 55.

    De Lavergne, C., Palter, J. B., Galbraith, E. D., Bernardello, R. & Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Change 4, 278–282 (2014).

    • Article
    • Google Scholar
  • 56.

    Send, U. et al. SeaCycler: a moored open-ocean profiling system for the upper ocean in extended self-contained deployments. J. Atmos. Ocean. Technol. 30, 1555–1565 (2013).

    • Article
    • Google Scholar
  • 57.

    Tengberg, A. et al. Evaluation of a lifetime‐based optode to measure oxygen in aquatic systems. Limnol. Oceanogr.: Methods 4, 7–17 (2006).

    • Article
    • Google Scholar
  • 58.

    Tengberg, A. & Hovdenes, J. Information on Long-Term Stability and Accuracy of Aanderaa Oxygen Optodes. Information about Multipoint Calibration System and Sensor Option Overview Aanderaa Data Instruments AS Technical Note (Aanderaa, 2014).

  • 59.

    Garcia, H. E. & Gordon, L. I. Oxygen solubility in seawater: better fitting equations. Limnol. Oceanogr. 37, 1307–1312 (1992).

    • Article
    • Google Scholar
  • 60.

    Millero, F. J. Carbonate constants for estuarine waters. Mar. Freshw. Res. 61, 139–142 (2010).

    • Article
    • Google Scholar
  • 61.

    Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    • Article
    • Google Scholar
  • 62.

    Bittig, H. C., Fiedler, B., Scholz, R., Krahmann, G. & Körtzinger, A. Time response of oxygen optodes on profiling platforms and its dependence on flow speed and temperature. Limnol. Oceanogr. 12, 617–636 (2014).

    • Article
    • Google Scholar
  • 63.

    Bakker, D. et al. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth Syst. Sci. Data 8, 383–413 (2016).

    • Article
    • Google Scholar
  • 64.

    Weiss, R. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    • Article
    • Google Scholar
  • 65.

    Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    • Article
    • Google Scholar
  • 66.

    Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    • Article
    • Google Scholar
  • 67.

    Kihm, C. & Körtzinger, A. Air-sea gas transfer velocity for oxygen derived from float data. J. Geophys. Res. 115, C12003 (2010).

    • Article
    • Google Scholar
  • 68.

    Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. & McGillis, W. R. Advances in quantifying air–sea gas exchange and environmental forcing. Annu. Rev. Mar. Sci. 1, 213–244 (2009).

    • Article
    • Google Scholar
  • 69.

    Wanninkhof, R. & McGillis, W. R. A cubic relationship between air–sea CO2 exchange and wind speed. Geophys. Res. Lett. 26, 1889–1892 (1999).

    • Article
    • Google Scholar
  • 70.

    McGillis, W. R., Edson, J., Hare, J. & Fairall, C. Direct covariance air–sea CO2 fluxes. J. Geophys. Res. Oceans 106, 16729–16745 (2001).

    • Article
    • Google Scholar
  • 71.

    Nightingale, P. D. et al. In situ evaluation of air–sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycles 14, 373–387 (2000).

    • Article
    • Google Scholar
  • 72.

    Ho, D. T. et al. Toward a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J. Geophys. Res. Oceans 116, C00F04 (2011).

    • Google Scholar
  • 73.

    Sweeney, C. et al. Constraining global air–sea gas exchange for CO2 with recent bomb 14C measurements. Glob. Biogeochem. Cycles 21, GB2015 (2007).

    • Article
    • Google Scholar
  • 74.

    Emerson, S. & Bushinsky, S. The role of bubbles during air–sea gas exchange. J. Geophys. Res. Oceans 121, 4360–4376 (2016).

    • Article
    • Google Scholar
  • 75.

    Woolf, D. K. & Thorpe, S. Bubbles and the air–sea exchange of gases in near-saturation conditions. J. Mar. Res. 49, 435–466 (1991).

    • Article
    • Google Scholar
  • 76.

    Spitzer, W. S. & Jenkins, W. J. Rates of vertical mixing, gas exchange and new production: estimates from seasonal gas cycles in the upper ocean near Bermuda. J. Mar. Res. 47, 169–196 (1989).

    • Article
    • Google Scholar
  • 77.

    Jenkins, W. The use of anthropogenic tritium and helium-3 to study subtropical gyre ventilation and circulation. Philos. Trans. R. Soc. Lond. A 325, 43–61 (1988).

    • Article
    • Google Scholar
  • 78.

    Asher, W. et al. in Gas Transfer at Water Surfaces Vol. 127 (eds Donelan, M. A. et al.) 199–203 (AGU, 2002).

  • 79.

    McKinley, G. A., Follows, M. J. & Marshall, J. Interannual variability of the air–sea flux of oxygen in the North Atlantic. Geophys. Res. Lett. 27, 2933–2936 (2000).

    • Article
    • Google Scholar
  • 80.

    Atlas, R. et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteorol. Soc. 92, 157–174 (2011).

    • Article
    • Google Scholar
  • 81.

    Mesinger, F. et al. North American Regional Reanalysis. Bull. Am. Meteor. Soc. 87, 343–360 (2006).

    • Article
    • Google Scholar
  • 82.

    Smith, G. C. et al. A new atmospheric dataset for forcing ice–ocean models: evaluation of reforecasts using the Canadian global deterministic prediction system. Q. J. R. Meteorol. Soc. 140, 881–894 (2014).

    • Article
    • Google Scholar
  • 83.

    Dee, D. P. et al. The ERA‐Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    • Article
    • Google Scholar
  • 84.

    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    • Article
    • Google Scholar
  • 85.

    Bentamy, A. & Fillon, D. C. Gridded surface wind fields from Metop/ASCAT measurements. Int. J. Remote Sens. 33, 1729–1754 (2012).

    • Article
    • Google Scholar
  • 86.

    Moore, G., Pickart, R. S. & Renfrew, I. A. Buoy observations from the windiest location in the world ocean, Cape Farewell, Greenland. Geophys. Res. Lett. 35, L18802 (2008).

    • Article
    • Google Scholar
  • 87.

    Renfrew, I. A., Outten, S. D. & Moore, G. W. K. An easterly tip jet off Cape Farewell, Greenland. I: aircraft observations. Q. J. R. Meteorol. Soc. 135, 1919–1933 (2009).

    • Article
    • Google Scholar
  • 88.

    Renfrew, I. A., Moore, G. W. K., Guest, P. S. & Bumke, K. A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses. J. Phys. Oceanogr. 32, 383–400 (2002).

    • Article
    • Google Scholar
  • 89.

    Severinghaus, J. P. Studies of the Terrestrial Molecular Oxygen and Carbon Cycles in Sand Dune Gases and in Biosphere 2. PhD thesis (Columbia University, 1995).

  • 90.

    Johnson, K. S., Plant, J. N., Riser, S. C. & Gilbert, D. Air oxygen calibration of oxygen optodes on a profiling float array. J. Atmos. Ocean. Technol. 32, 2160–2172 (2015).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    MIT helps first-time entrepreneur build food hospitality company

    New electrode design may lead to more powerful batteries