in

Rapid winter warming could disrupt coastal marine fish community structure

  • 1.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    CAS  Google Scholar 

  • 2.

    Albouy, C. et al. Projected climate change and the changing biogeography of coastal Mediterranean fishes. J. Biogeogr. 40, 534–547 (2013).

    Google Scholar 

  • 3.

    Hoegh-Guldberg, O. et al. Impacts of 1.5 °C global warming on natural and human systems. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 212–251 (WMO, 2018).

  • 4.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  Google Scholar 

  • 5.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Google Scholar 

  • 6.

    EUROSTAT EU Fishery Economic Report 2010. European Union Mediterranean and Black Sea Fishing Fleet (FIRMS, 2010).

  • 7.

    Abulafia, D. The Great Sea: a Human History of the Mediterranean (Oxford Univ. Press, 2011).

  • 8.

    Giakoumi, S. et al. Ecoregion-based conservation planning in the Mediterranean: dealing with large-scale heterogeneity. PLoS ONE 8, e76449 (2013).

    CAS  Google Scholar 

  • 9.

    Katsanevakis, S. et al. Invading the Mediterranean Sea: biodiversity patterns shaped by human activities. Front. Mar. Sci. 1, 32 (2014).

    Google Scholar 

  • 10.

    Pinardi, N., Arneri, E., Crise, A., Ravaioli, M. & Zavatarelli, M. in The Sea Vol. 14 (eds Robinson, A. & Brink, K.) 1243–1330 (Harvard Univ. Press, 2006).

  • 11.

    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Perez, T. Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).

    Google Scholar 

  • 12.

    Cramer, W. et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 8, 972–980 (2018).

    Google Scholar 

  • 13.

    Bintanja, R. & van der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1556 (2013).

    CAS  Google Scholar 

  • 14.

    Kharin, V. V., Zwiers, F. W., Zhang, X. & Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Change 119, 345–357 (2013).

    Google Scholar 

  • 15.

    Thibeault, J. M. & Seth, A. Changing climate extremes in the Northeast United States: observations and projections from CMIP5. Clim. Change 127, 273–287 (2014).

    Google Scholar 

  • 16.

    Both, C. et al. Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proc. R. Soc. Lond. B Biol. Sci. 2010, 1259–1266 (1685).

    Google Scholar 

  • 17.

    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).

    Google Scholar 

  • 18.

    Tonkin, J. D., Bogan, M. T., Bonada, N., Rios-Touma, B. & Lytle, D. A. Seasonality and predictability shape temporal species diversity. Ecology 98, 1201–1216 (2017).

    Google Scholar 

  • 19.

    Hiddink, J. G. & Ter Hofstede, R. Climate induced increases in species richness of marine fishes. Glob. Change Biol. 14, 453–460 (2008).

    Google Scholar 

  • 20.

    Rutterford, L. A. et al. Future fish distributions constrained by depth in warming seas. Nat. Clim. Change 5, 569–573 (2015).

    Google Scholar 

  • 21.

    Colloca, F., Scarcella, G. & Libralato, S. Recent trends and impacts of fisheries exploitation on Mediterranean stocks and ecosystems. Front. Mar. Sci. 4, 244 (2017).

    Google Scholar 

  • 22.

    Barange, M. et al. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. FAO Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

  • 23.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).

  • 24.

    Rice, J. C. & Garcia, S. M. Fisheries, food security, climate change, and biodiversity: characteristics of the sector and perspectives on emerging issues. ICES J. Mar. Sci. 68, 1343–1353 (2011).

    Google Scholar 

  • 25.

    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    CAS  Google Scholar 

  • 26.

    Ben Rais Lasram, F. et al. The Mediterranean Sea as a ‘cul‐de‐sac’ for endemic fishes facing climate change. Glob. Change Biol. 16, 3233–3245 (2010).

    Google Scholar 

  • 27.

    Yeager, L. A., Deith, M. C., McPherson, J. M., Williams, I. D. & Baum, J. K. Scale dependence of environmental controls on the functional diversity of coral reef fish communities. Glob. Ecol. Biogeogr. 26, 1177–1189 (2017).

    Google Scholar 

  • 28.

    Zenetos, A. et al. Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr. Mar. Sci. 6, 63–118 (2005).

    Google Scholar 

  • 29.

    The State of Mediterranean and Black Sea Fisheries: 2018 (FAO & General Fisheries Commission for the Mediterranean, 2018).

  • 30.

    Scientific Technical and Economic Committee for Fisheries (STECF) The 2015 Annual Economic Report on the EU Fishing Fleet (STECF-15-07) (Publications Office of the European Union, 2015).

  • 31.

    Albouy, C. et al. FishMed: traits, phylogeny, current and projected species distribution of Mediterranean fishes, and environmental data. Ecology 96, 2312–2313 (2015).

    Google Scholar 

  • 32.

    Beuvier, J. et al. Modeling the Mediterranean Sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J. Geophys. Res. Oceans 115, C08017 (2010).

    Google Scholar 

  • 33.

    Arnell, N. W. Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob. Environ. Change 14, 31–52 (2004).

    Google Scholar 

  • 34.

    Adloff, F. et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dynam. 45, 2775–2802 (2015).

    Google Scholar 

  • 35.

    Whitehead, P. J. P., Bauchot, M., Hureau, J., Nielsen, J. & Tortonese, E. Fishes of the North-Eastern Atlantic and the Mediterranean Vol. 1 (UNESCO, 1984).

  • 36.

    Gonçalves, A. R., Von Zuben, F. J. & Banerjee, A. Multi-label structure learning with Ising model selection. In Proc. Twenty-Fourth International Joint Conference on Artificial Intelligence 3525–3531 (AAAI Press, 2015).

  • 37.

    Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 42, 463–484 (2012).

    Google Scholar 

  • 38.

    Gravel, D. et al. Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography 42, 401–415 (2019).

    Google Scholar 

  • 39.

    Dayton, P. K. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol. Monogr. 41, 351–389 (1971).

    Google Scholar 

  • 40.

    Dormann, C. F. et al. Biotic interactions in species distribution modelling: 10 questions to guide interpretation and avoid false conclusions. Glob. Ecol. Biogeogr. 27, 1004–1016 (2018).

    Google Scholar 

  • 41.

    Dormann, C. F., Fründ, J. & Schaefer, H. M. Identifying causes of patterns in ecological networks: opportunities and limitations. Annu. Rev. Ecol. Evol. Syst. 48, 559–584 (2017).

    Google Scholar 

  • 42.

    Golding, N., Nunn, M. A. & Purse, B. V. Identifying biotic interactions which drive the spatial distribution of a mosquito community. Parasites Vectors 8, 367 (2015).

    Google Scholar 

  • 43.

    Harris, D. J. Generating realistic assemblages with a joint species distribution model. Methods Ecol. Evol. 6, 465–473 (2015).

    Google Scholar 

  • 44.

    Thorson, J. T. et al. Joint dynamic species distribution models: a tool for community ordination and spatio-temporal monitoring. Glob. Ecol. Biog. 25, 1144–1158 (2016).

    Google Scholar 

  • 45.

    Azaele, S., Muneepeerakul, R., Rinaldo, A. & Rodriguez-Iturbe, I. Inferring plant ecosystem organization from species occurrences. J. Theor. Biol. 262, 323–329 (2010).

    CAS  Google Scholar 

  • 46.

    Harris, D. J. Inferring species interactions from co‐occurrence data with Markov networks. Ecology 97, 3308–3314 (2016).

    Google Scholar 

  • 47.

    Cheng, J., Levina, E., Wang, P. & Zhu, J. A sparse Ising model with covariates. Biometrics 70, 943–953 (2014).

    Google Scholar 

  • 48.

    Lindberg, O. Markov Random Fields in Cancer Mutation Dependencies. MSc Thesis, Univ. Turku (2016).

  • 49.

    Clark, N. J., Wells, K. & Lindberg, O. Unravelling changing interspecific interactions across environmental gradients using Markov random fields. Ecology 99, 1277–1283 (2018).

    Google Scholar 

  • 50.

    Lee, J. D. & Hastie, T. J. Learning the structure of mixed graphical models. J. Comput. Graph. Stat. 24, 230–253 (2015).

    Google Scholar 

  • 51.

    Wood, S. N. Thin plate regression splines. J. R. Stat. Soc. B Stat. Methodol. 65, 95–114 (2003).

    Google Scholar 

  • 52.

    Kammann, E. & Wand, M. P. Geoadditive models. J. R. Stat. Soc. C Appl. Stat. 52, 1–18 (2003).

    Google Scholar 

  • 53.

    McInerny, G. J. & Purves, D. W. Fine‐scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods Ecol. Evol. 2, 248–257 (2011).

    Google Scholar 

  • 54.

    Givan, O., Parravicini, V., Kulbicki, M. & Belmaker, J. Trait structure reveals the processes underlying fish establishment in the Mediterranean. Glob. Ecol. Biogeogr. 26, 142–153 (2017).

    Google Scholar 

  • 55.

    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc. Natl Acad. Sci. USA 111, 13757–13762 (2014).

    CAS  Google Scholar 

  • 56.

    Tsirogiannis, C. & Sandel, B. PhyloMeasures: a package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2015).

    Google Scholar 

  • 57.

    Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008).

    CAS  Google Scholar 

  • 58.

    Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).

    CAS  Google Scholar 

  • 59.

    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1965, 1–9 (2006).

    Google Scholar 

  • 60.

    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. 93, 785–800 (2017).

    Google Scholar 

  • 61.

    Miller, P. J., Lubke, G. H., McArtor, D. B. & Bergeman, C. S. Finding structure in data using multivariate tree boosting. Psychol. Methods 21, 583–602 (2016).

    Google Scholar 

  • 62.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 63.

    Clark, N. J., Wells, K. & Lindberg, O. MRFcov: Markov random fields with additional covariates. R package version 1.0 https://github.com/nicholasjclark/MRFcov (2018).

  • 64.

    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B Stat. Methodol. 73, 3–36 (2011).

    Google Scholar 

  • 65.

    Wickham, H. & Francois, R. dplyr: A grammar of data manipulation. R package version 0.7.2 https://CRAN.R-project.org/package=dplyr (2017).

  • 66.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 67.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS  Google Scholar 


  • Source: Ecology - nature.com

    Gainers and losers of surface and terrestrial water resources in China during 1989–2016

    Time to revise the Sustainable Development Goals