
Scholte, E. J. et al. The Asian tiger mosquito (Aedes albopictus) in the Netherlands: should we worry? Proc. Neth. Entomol. Soc. Meet. 18, 131–136 (2007).
Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).
Hochedez, P. et al. Chikungunya infection in travelers. Emerg. Infect. Dis. 12, 1565–1567 (2006).
Paupy, C., Delatte, H., Bagny, L., Corbe, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).
Pagés, F. et al. Aedes albopictus Mosquito: The Main Vector of the 2007 Chikungunya Outbreak in Gabon. PLoS One. 4, e4691 (2009).
Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 7, 76–85 (2007).
Hawley, W. The biology of Aedes albopictus. J. Am. Mosquito Contr. Assoc. 4, 2–39 (1988).
Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on La Réunion. Vector Borne Zoonotic Dis. 10, 249–258 (2010).
Tuten, H., Bridges, W., Paul, K. & Adler, P. Blood-feeding ecology of mosquitoes in zoos. Med. Vet. Entomol. 26, 407–416 (2012).
Faraji, A. et al. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl. Trop. Dis. 8, e3037 (2014).
Sivan, A., Shriram, A. N., Sunish, I. P. & Vidhya, P. T. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India. Parasitol Res. 114, 353 (2015).
Takken, W. & Knols, B. G. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44, 131–57 (1999).
Lehane, M. J. The biology of blood-sucking in insects. Cambridge: Cambridge University Press; (2005).
Harrington, L. C., Edman, J. D. & Scott, T. W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 38, 411–422 (2001).
Bernier, U. R., Kline, D. L., Schreck, C. E., Yost, R. A. & Barnard, D. R. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Contr. Assoc. 18, 186–195 (2002).
Curran, A. M., Rabin, S. I., Prada, P. A. & Furton, K. G. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 31, 1607–1619 (2005).
Curran, A. M., Ramirez, C. F., Schoon, A. A. & Furton, K. G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B. 846, 86–97 (2007).
Gallagher, M. et al. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159, 780–791 (2008).
Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. 106, 18803–18808 (2009).
Farajollahi, A. et al. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 46, 919–925 (2009).
Hao, H., Sun, J. & Dai, J. Preliminary analysis of several attractants and spatial repellents for the mosquito, Aedes albopictus using an olfactometer. J. Insect Sci. 12, 76 (2012).
Akaratovic, K. I., Kiser, J. P., Gordon, S. & Abadam, C. F. Evaluation of the trapping performance of four biogents AG traps and two lures for the surveillance of Aedes albopictus and other host-seeking mosquitoes. J. Am. Mosq. Contr. Assoc. 33, 108–115 (2017).
Lacroix, R., Delatte, H., Hue, T., Dehecq, J. S. & Reiter, P. Adaptation of the BG-Sentinel trap to capture male and female. Med. Vet. Entomol. 23, 160–162 (2009).
Gouagna, L. C., Dehecq, J. S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark-release-recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).
Le Goff, G. et al. Enhancement of the BG-Sentinel trap with varying number of mice for field sampling of male and female Aedes albopictus mosquitoes. Parasit Vectors. 9, 514 (2016).
Goodman, H., Egisi, A., Fonseca, D. M., Leisnham, P. T. & Ladeau, S. L. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors. 11, 218 (2018).
Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasit Vectors. 7, 580 (2014).
Xie, L. et al. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasit Vectors. 12, 1–10 (2019).
Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1023 (1996).
Klein, S. L. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci. Biobehav. Rev. 24, 627–638 (2000).
Eloi-Santos, S., Olsen, N. J., Correa-Oliveira, R. & Colley, D. G. Schistosoma mansoni: mortality, pathophysiology, and susceptibility differences in male and female mice. Exp. Parasitol. 75, 168–175 (1992).
Larralde, C., Morales, J., Terrazas, I., Govezensky, T. & Romano, M. C. Sex hormone changes induced by the parasite lead to feminization of the male host in murine Taenia crassiceps cysticercosis. J. Steroid Biochem. Mol. Biol. 52, 575–580 (1995).
Walker, W., Roberts, C. W., Ferguson, D. J., Jebbari, H. & Alexander, J. Innate immunity to Toxoplasma gondii is influenced by gender and is associated with differences in interleukin-12 and gamma interferon production. Infect. Immun. 65, 1119–1121 (1997).
Aguilar-Delfin, I., Homer, M. J., Wettstein, P. J. & Persing, D. H. Innate resistance to Babesia infection is influenced by genetic background and gender. Infect. Immun. 69, 7955–7958 (2001).
Morales-Montor, J. et al. Host gender in parasitic infections of mammals: an evaluation of the female host supremacy paradigm. J. Parasitol. 90, 531–546 (2004).
Achiraman, S. & Archunan, G. 1-Iodo-2 methyl undecane, a putative estrus-specific urinary chemo-signal of female mouse (Mus musculus). Theriogenology. 66, 1913–1920 (2006).
Rosenblatt, J. S., Olufowobi, A. & Siegel, H. I. Effects of pregnancy hormones on maternal responsiveness, responsiveness to estrogen stimulation of maternal behavior, and the lordosis response to estrogen stimulation. Horm. Behav. 33, 104–114 (1998).
O’Connell, R. J., Singer, A. G., Stern, F. L., Jesmajian, S. & Agosta, W. C. Cyclic variation in the concentration of sex attractant pheromone in hamster vaginal discharge. Behav. Neural. Biol. 31, 457–464 (1981).
Rajanarayanan, S. & Archunan, G. Occurrence of Flehmen in male buffaloes (Bubalusbubalis) with special reference to estrus. Theriogenology. 61, 861–866 (2004).
Novotny, M. V., Ma, W., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R Soc. B. 266, 2017–2022 (1999).
Lindsay, S. et al. Effect of pregnancy on exposure to malaria mosquitoes. Lancet. 355, 1972 (2000).
Ansell, J., Hamilton, K. A., Pinder, M., Walraven, G. E. L. & Lindsay, S. W. Shortrange attractiveness of pregnant women to Anopheles gambiae mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 96, 113–116 (2002).
Zhang, J. X., Sun, L. X., Zhang, J. H. & Feng, Z. Y. Sex- and gonad-affecting scent compounds and 3 male pheromones in the rat. Chem Senses. 33, 611–621 (2008a).
Teal, P. E. A., Tumlinson, J. H. & Heath, R. R. Chemical and behavioral analyses of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). J. Chem. Ecol. 12, 107–126 (1986).
Heath, R. R. & Manukian, A. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification. J. Chem. Ecol. 18, 1209–1226 (1992).
Soini, H. A. et al. Comparison of urinary scents of two related mouse species, Mus spicilegus and Mus domesticus. J. Chem. Ecol. 35, 580–589 (2009).
Yao-Hua, Z. & Jian-Xu, Z. Urine-Derived Key Volatiles May Signal Genetic Relatedness in Male Rats. Chem. Senses. 36, 125–135 (2011).
Zhang, J. X., Liu, Y. J., Zhang, J. H. & Sun, L. X. Dual role of preputial gland secretion and its major components in sex recognition of mice. Physiol. Behav. 95, 388–394 (2008b).
Elgaali, H. et al. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related gram positive and gram negative bacteria. J. Basic. Microbiol. 42, 373–380 (2002).
Lindh, J. M., Kannaste, A., Knols, B. G. J., Faye, I. & Borg-Karlson, A. K. Oviposition responses of Anopheles gambiaes s. (Diptera: Culicidae) and identification of volatiles from bacteria containing species. J. Med. Entomol. 45, 1039–1049 (2008).
Millar, J. G., Chaney, J. D. & Mulla, M. S. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J. Am. Mosquito Contr. Assoc. 8, 11–17 (1992).
Cork, A. & Park, K. C. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10, 269–276 (1996).
Loke, W. M. et al. A metabolite profiling approach to identify biomarkers of flavonoid in take in humans. J. Nutr. 139, 2309–2314 (2009).
Brown, R. E. Mammalian social odors: A critical review. Adv. stud. behav. 10, 103–162 (1979).
Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature. 414, 631–634 (2001).
Kline, D. L., Takken, W., Wood, J. F. & Carlson, D. A. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Med. Vet. Entomol. 4, 383–391 (1990).
Cork, A. Olfactory basis of host location by mosquitoes and other hematophagous Diptera. Ciba Foundation Symposium. 71–88 (1996).
Allan, S. A. & Kline, D. L. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera:Culicidae). J. Chem. Ecol. 21, 1847–1860 (1995).
Poonam, S., Paily, K. P. & Balaraman, K. Oviposition attractancy of bacterial culture filtrates: response of Culex quinquefasciatus. Mem. Inst. Oswaldo Cruz 97, 359–362 (2002).
Afify, A. & Galizia, D. C. G. Chemosensory cues for mosquito oviposition site selection. J. Med. Entomol. 52, 120–130 (2015).
Zhu, F., Xu, P., Barbosa, R. M., Choo, Y. M. & Leal, W. S. RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. Insect Biochem. Mol. Biol. 43, 916–923 (2013).
Choo, Y. M., Buss, G. K., Tan, K. & Leal, W. S. Multitasking roles of mosquito labrum in oviposition and blood feeding. Front. Physiol. 306, 1–11 (2015).
Van Loon, J. J. et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J. Chem. Ecol. 41, 567–573 (2015).
Hartberg, W. K. Observations on the mating behavior of Aedes aegypti in nature. Bull World Health Organ. 45(6), 847–850 (1971).
Dieng, H. et al. Sex before or after blood feeding: Mating activities of Aedes aegypti males under conditions of different densities and female blood feeding opportunities. J. Asia-Pacific Entomol. 2(1), 274–280 (2019).
Casas-Martínez, M. et al. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus. J. Vector Ecol. 38, 277–287 (2013).
Pitts, R. J., Mozuraitis, R., Gauvin-Bialecki, A. & Lemperiere, G. The roles of kairomones, synomones and pheromones in the chemically-mediated behavior of male mosquitoes. Acta Trop. 132, 26–34 (2014).
Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera:Culicidae). J. Am. Mosquito Contr. Assoc. 23(1), 1–10 (2007).
Nasirian, H. & Ladonni, H. Artificial blood feeding of Anopheles stephensi on a membrane apparatus with human whole blood. J. Am Mosquito Contr. Assoc. 22, 54–56 (2006).
Savage, H. M. & Smith, G. C. Aedes albopictus y Aedes aegypti en las Américas: implicaciones para la transmisión de arbovirus e identificación de hembras adultas dañadas. Boletín de la Oficina Sanitaria Panamericana. 118, 473–477 (1995).
Detinova, T. S. Age-grouping methods in Diptera of medical importance. WHO Geneva, Switzerland (1962).
Source: Ecology - nature.com