in

Rat volatiles as an attractant source for the Asian tiger mosquito, Aedes albopictus

  • 1.

    Scholte, E. J. et al. The Asian tiger mosquito (Aedes albopictus) in the Netherlands: should we worry? Proc. Neth. Entomol. Soc. Meet. 18, 131–136 (2007).

    • Google Scholar
  • 2.

    Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).

  • 3.

    Hochedez, P. et al. Chikungunya infection in travelers. Emerg. Infect. Dis. 12, 1565–1567 (2006).

  • 4.

    Paupy, C., Delatte, H., Bagny, L., Corbe, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microb. Infect. 11, 1177–1185 (2009).

  • 5.

    Pagés, F. et al. Aedes albopictus Mosquito: The Main Vector of the 2007 Chikungunya Outbreak in Gabon. PLoS One. 4, e4691 (2009).

  • 6.

    Benedict, M. Q., Levine, R. S., Hawley, W. A. & Lounibos, P. Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis. 7, 76–85 (2007).

  • 7.

    Hawley, W. The biology of Aedes albopictus. J. Am. Mosquito Contr. Assoc. 4, 2–39 (1988).

    • Google Scholar
  • 8.

    Delatte, H. et al. Blood-feeding behavior of Aedes albopictus, a vector of chikungunya on La Réunion. Vector Borne Zoonotic Dis10, 249–258 (2010).

  • 9.

    Tuten, H., Bridges, W., Paul, K. & Adler, P. Blood-feeding ecology of mosquitoes in zoos. Med. Vet. Entomol. 26, 407–416 (2012).

  • 10.

    Faraji, A. et al. Comparative host feeding patterns of the Asian tiger mosquito, Aedes albopictus, in urban and suburban Northeastern USA and implications for disease transmission. PLoS Negl. Trop. Dis. 8, e3037 (2014).

  • 11.

    Sivan, A., Shriram, A. N., Sunish, I. P. & Vidhya, P. T. Host-feeding pattern of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in heterogeneous landscapes of South Andaman, Andaman and Nicobar Islands, India. Parasitol Res. 114, 353 (2015).

    • Google Scholar
  • 12.

    Takken, W. & Knols, B. G. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu. Rev. Entomol. 44, 131–57 (1999).

  • 13.

    Lehane, M. J. The biology of blood-sucking in insects. Cambridge: Cambridge University Press; (2005).

  • 14.

    Harrington, L. C., Edman, J. D. & Scott, T. W. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J. Med. Entomol. 38, 411–422 (2001).

  • 15.

    Bernier, U. R., Kline, D. L., Schreck, C. E., Yost, R. A. & Barnard, D. R. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Contr. Assoc. 18, 186–195 (2002).

    • CAS
    • Google Scholar
  • 16.

    Curran, A. M., Rabin, S. I., Prada, P. A. & Furton, K. G. Comparison of the volatile organic compounds present in human odor using SPME-GC/MS. J. Chem. Ecol. 31, 1607–1619 (2005).

  • 17.

    Curran, A. M., Ramirez, C. F., Schoon, A. A. & Furton, K. G. The frequency of occurrence and discriminatory power of compounds found in human scent across a population determined by SPME-GC/MS. J. Chromatogr. B. 846, 86–97 (2007).

  • 18.

    Gallagher, M. et al. Analyses of volatile organic compounds from human skin. Br. J. Dermatol. 159, 780–791 (2008).

  • 19.

    Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl. Acad. Sci. 106, 18803–18808 (2009).

  • 20.

    Farajollahi, A. et al. Field efficacy of BG-Sentinel and industry-standard traps for Aedes albopictus (Diptera: Culicidae) and West Nile virus surveillance. J. Med. Entomol. 46, 919–925 (2009).

  • 21.

    Hao, H., Sun, J. & Dai, J. Preliminary analysis of several attractants and spatial repellents for the mosquito, Aedes albopictus using an olfactometer. J. Insect Sci. 12, 76 (2012).

  • 22.

    Akaratovic, K. I., Kiser, J. P., Gordon, S. & Abadam, C. F. Evaluation of the trapping performance of four biogents AG traps and two lures for the surveillance of Aedes albopictus and other host-seeking mosquitoes. J. Am. Mosq. Contr. Assoc. 33, 108–115 (2017).

    • Article
    • Google Scholar
  • 23.

    Lacroix, R., Delatte, H., Hue, T., Dehecq, J. S. & Reiter, P. Adaptation of the BG-Sentinel trap to capture male and female. Med. Vet. Entomol. 23, 160–162 (2009).

  • 24.

    Gouagna, L. C., Dehecq, J. S., Fontenille, D., Dumont, Y. & Boyer, S. Seasonal variation in size estimates of Aedes albopictus population based on standard mark-release-recapture experiments in an urban area on Reunion Island. Acta Trop. 143, 89–96 (2015).

  • 25.

    Le Goff, G. et al. Enhancement of the BG-Sentinel trap with varying number of mice for field sampling of male and female Aedes albopictus mosquitoes. Parasit Vectors. 9, 514 (2016).

  • 26.

    Goodman, H., Egisi, A., Fonseca, D. M., Leisnham, P. T. & Ladeau, S. L. Primary blood-hosts of mosquitoes are influenced by social and ecological conditions in a complex urban landscape. Parasit Vectors. 11, 218 (2018).

  • 27.

    Pombi, M. et al. Field evaluation of a novel synthetic odour blend and of the synergistic role of carbon dioxide for sampling host-seeking Aedes albopictus adults in Rome, Italy. Parasit Vectors. 7, 580 (2014).

  • 28.

    Xie, L. et al. Enhancing attraction of the vector mosquito Aedes albopictus by using a novel synthetic odorant blend. Parasit Vectors. 12, 1–10 (2019).

    • Article
    • Google Scholar
  • 29.

    Zuk, M. & McKean, K. A. Sex differences in parasite infections: patterns and processes. Int. J. Parasitol. 26, 1009–1023 (1996).

  • 30.

    Klein, S. L. The effects of hormones on sex differences in infection: from genes to behavior. Neurosci. Biobehav. Rev. 24, 627–638 (2000).

  • 31.

    Eloi-Santos, S., Olsen, N. J., Correa-Oliveira, R. & Colley, D. G. Schistosoma mansoni: mortality, pathophysiology, and susceptibility differences in male and female mice. Exp. Parasitol. 75, 168–175 (1992).

  • 32.

    Larralde, C., Morales, J., Terrazas, I., Govezensky, T. & Romano, M. C. Sex hormone changes induced by the parasite lead to feminization of the male host in murine Taenia crassiceps cysticercosis. J. Steroid Biochem. Mol. Biol. 52, 575–580 (1995).

  • 33.

    Walker, W., Roberts, C. W., Ferguson, D. J., Jebbari, H. & Alexander, J. Innate immunity to Toxoplasma gondii is influenced by gender and is associated with differences in interleukin-12 and gamma interferon production. Infect. Immun. 65, 1119–1121 (1997).

  • 34.

    Aguilar-Delfin, I., Homer, M. J., Wettstein, P. J. & Persing, D. H. Innate resistance to Babesia infection is influenced by genetic background and gender. Infect. Immun. 69, 7955–7958 (2001).

  • 35.

    Morales-Montor, J. et al. Host gender in parasitic infections of mammals: an evaluation of the female host supremacy paradigm. J. Parasitol. 90, 531–546 (2004).

  • 36.

    Achiraman, S. & Archunan, G. 1-Iodo-2 methyl undecane, a putative estrus-specific urinary chemo-signal of female mouse (Mus musculus). Theriogenology. 66, 1913–1920 (2006).

  • 37.

    Rosenblatt, J. S., Olufowobi, A. & Siegel, H. I. Effects of pregnancy hormones on maternal responsiveness, responsiveness to estrogen stimulation of maternal behavior, and the lordosis response to estrogen stimulation. Horm. Behav. 33, 104–114 (1998).

  • 38.

    O’Connell, R. J., Singer, A. G., Stern, F. L., Jesmajian, S. & Agosta, W. C. Cyclic variation in the concentration of sex attractant pheromone in hamster vaginal discharge. Behav. Neural. Biol. 31, 457–464 (1981).

  • 39.

    Rajanarayanan, S. & Archunan, G. Occurrence of Flehmen in male buffaloes (Bubalusbubalis) with special reference to estrus. Theriogenology. 61, 861–866 (2004).

  • 40.

    Novotny, M. V., Ma, W., Wiesler, D. & Zidek, L. Positive identification of the puberty-accelerating pheromone of the house mouse: the volatile ligands associating with the major urinary protein. Proc. R Soc. B. 266, 2017–2022 (1999).

  • 41.

    Lindsay, S. et al. Effect of pregnancy on exposure to malaria mosquitoes. Lancet. 355, 1972 (2000).

  • 42.

    Ansell, J., Hamilton, K. A., Pinder, M., Walraven, G. E. L. & Lindsay, S. W. Shortrange attractiveness of pregnant women to Anopheles gambiae mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 96, 113–116 (2002).

  • 43.

    Zhang, J. X., Sun, L. X., Zhang, J. H. & Feng, Z. Y. Sex- and gonad-affecting scent compounds and 3 male pheromones in the rat. Chem Senses. 33, 611–621 (2008a).

  • 44.

    Teal, P. E. A., Tumlinson, J. H. & Heath, R. R. Chemical and behavioral analyses of volatile sex pheromone components released by calling Heliothis virescens (F.) females (Lepidoptera: Noctuidae). J. Chem. Ecol. 12, 107–126 (1986).

  • 45.

    Heath, R. R. & Manukian, A. Development and evaluation of systems to collect volatile semiochemicals from insects and plants using a charcoal-infused medium for air purification. J. Chem. Ecol. 18, 1209–1226 (1992).

  • 46.

    Soini, H. A. et al. Comparison of urinary scents of two related mouse species, Mus spicilegus and Mus domesticus. J. Chem. Ecol. 35, 580–589 (2009).

  • 47.

    Yao-Hua, Z. & Jian-Xu, Z. Urine-Derived Key Volatiles May Signal Genetic Relatedness in Male Rats. Chem. Senses. 36, 125–135 (2011).

    • Article
    • Google Scholar
  • 48.

    Zhang, J. X., Liu, Y. J., Zhang, J. H. & Sun, L. X. Dual role of preputial gland secretion and its major components in sex recognition of mice. Physiol. Behav. 95, 388–394 (2008b).

  • 49.

    Elgaali, H. et al. Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related gram positive and gram negative bacteria. J. Basic. Microbiol. 42, 373–380 (2002).

  • 50.

    Lindh, J. M., Kannaste, A., Knols, B. G. J., Faye, I. & Borg-Karlson, A. K. Oviposition responses of Anopheles gambiaes s. (Diptera: Culicidae) and identification of volatiles from bacteria containing species. J. Med. Entomol. 45, 1039–1049 (2008).

  • 51.

    Millar, J. G., Chaney, J. D. & Mulla, M. S. Identification of oviposition attractants for Culex quinquefasciatus from fermented Bermuda grass infusions. J. Am. Mosquito Contr. Assoc. 8, 11–17 (1992).

    • CAS
    • Google Scholar
  • 52.

    Cork, A. & Park, K. C. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10, 269–276 (1996).

  • 53.

    Loke, W. M. et al. A metabolite profiling approach to identify biomarkers of flavonoid in take in humans. J. Nutr. 139, 2309–2314 (2009).

  • 54.

    Brown, R. E. Mammalian social odors: A critical review. Adv. stud. behav. 10, 103–162 (1979).

    • Article
    • Google Scholar
  • 55.

    Hurst, J. L. et al. Individual recognition in mice mediated by major urinary proteins. Nature. 414, 631–634 (2001).

  • 56.

    Kline, D. L., Takken, W., Wood, J. F. & Carlson, D. A. Field studies on the potential of butanone, carbon dioxide, honey extract, 1-octen-3-ol, L-lactic acid and phenols as attractants for mosquitoes. Med. Vet. Entomol. 4, 383–391 (1990).

  • 57.

    Cork, A. Olfactory basis of host location by mosquitoes and other hematophagous Diptera. Ciba Foundation Symposium. 71–88 (1996).

  • 58.

    Allan, S. A. & Kline, D. L. Evaluation of organic infusions and synthetic compounds mediating oviposition in Aedes albopictus and Aedes aegypti (Diptera:Culicidae). J. Chem. Ecol. 21, 1847–1860 (1995).

  • 59.

    Poonam, S., Paily, K. P. & Balaraman, K. Oviposition attractancy of bacterial culture filtrates: response of Culex quinquefasciatus. Mem. Inst. Oswaldo Cruz 97, 359–362 (2002).

  • 60.

    Afify, A. & Galizia, D. C. G. Chemosensory cues for mosquito oviposition site selection. J. Med. Entomol. 52, 120–130 (2015).

  • 61.

    Zhu, F., Xu, P., Barbosa, R. M., Choo, Y. M. & Leal, W. S. RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. Insect Biochem. Mol. Biol. 43, 916–923 (2013).

  • 62.

    Choo, Y. M., Buss, G. K., Tan, K. & Leal, W. S. Multitasking roles of mosquito labrum in oviposition and blood feeding. Front. Physiol. 306, 1–11 (2015).

    • Google Scholar
  • 63.

    Van Loon, J. J. et al. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J. Chem. Ecol. 41, 567–573 (2015).

  • 64.

    Hartberg, W. K. Observations on the mating behavior of Aedes aegypti in nature. Bull World Health Organ. 45(6), 847–850 (1971).

  • 65.

    Dieng, H. et al. Sex before or after blood feeding: Mating activities of Aedes aegypti males under conditions of different densities and female blood feeding opportunities. J. Asia-Pacific Entomol. 2(1), 274–280 (2019).

    • Article
    • Google Scholar
  • 66.

    Casas-Martínez, M. et al. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus. J. Vector Ecol. 38, 277–287 (2013).

  • 67.

    Pitts, R. J., Mozuraitis, R., Gauvin-Bialecki, A. & Lemperiere, G. The roles of kairomones, synomones and pheromones in the chemically-mediated behavior of male mosquitoes. Acta Trop. 132, 26–34 (2014).

  • 68.

    Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera:Culicidae). J. Am. Mosquito Contr. Assoc. 23(1), 1–10 (2007).

    • Article
    • Google Scholar
  • 69.

    Nasirian, H. & Ladonni, H. Artificial blood feeding of Anopheles stephensi on a membrane apparatus with human whole blood. J. Am Mosquito Contr. Assoc. 22, 54–56 (2006).

    • Article
    • Google Scholar
  • 70.

    Savage, H. M. & Smith, G. C. Aedes albopictus y Aedes aegypti en las Américas: implicaciones para la transmisión de arbovirus e identificación de hembras adultas dañadas. Boletín de la Oficina Sanitaria Panamericana. 118, 473–477 (1995).

    • Google Scholar
  • 71.

    Detinova, T. S. Age-grouping methods in Diptera of medical importance. WHO Geneva, Switzerland (1962).


  • Source: Ecology - nature.com

    Staring into the vortex

    Marine virus predation by non-host organisms