in

Relative tail length correlates with body condition in male but not in female crowned leafnose snakes (Lytorhynchus diadema)

  • 1.

    Rensch, B. Evolution Above the Species Level (Columbia University Press, New York 1959).

  • 2.

    Shine, R. The evolution of large body size in females: a critique of Darwin’s “fecundity advantage” model. Am. Nat. 131, 124–131 (1988).

    • Article
    • Google Scholar
  • 3.

    Selander, R. K. Sexual selection and dimorphism in birds in Sexual Selection and the Descent of Man, 1871–1971 (ed. Campbell, B. G.) 180–230 (Aldine, Chicago 1972).

  • 4.

    Ralls, K. Sexual dimorphism in mammals: avian models and unanswered questions. Am. Nat. 111, 917–938 (1977).

    • Article
    • Google Scholar
  • 5.

    Ghiselin, M. T. The Economy of Nature and the Evolution of Sex (University of California Press, Berkeley 1974).

  • 6.

    Shine, R. Sexual selection and sexual dimorphism in the Amphibia. Copeia 1979, 297–306 (1979).

    • Article
    • Google Scholar
  • 7.

    Fairbairn, D. J. Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera): a field test. Ecol. Entomol. 15, 131–142 (1990).

    • Article
    • Google Scholar
  • 8.

    Fairbairn, D. J. & Preziosi, R. F. Sexual selection and the evolution of allometry for sexual size dimorphism in the water strider, Aquarius remiges. Am. Nat. 144, 101–118 (1994).

    • Article
    • Google Scholar
  • 9.

    Shine, R. Ecological causes for the evolution of sexual dimorpism: a review of the evidence. Quart. Rev. Biol. 64, 419–461 (1989).

  • 10.

    Cox, R. M., Butler, M. A. & John-Alder, H. B. The evolution of sexual size dimorphism in reptiles in Sex, size and Gender Roles: evolutionary Studies of Sexual Size Dimorphism (eds. Fairbairn, D. J. Blanckenhorn, W. U. & Szekdy, T.) 38–49 (Oxford University Press 2007).

  • 11.

    Hirst, A. G. & Kiørboe, T. Macroevolutionary patterns of sexual size dimorphism in copepods. Proc. Roy. Soc. B 281, 20140739 (2014).

    • Article
    • Google Scholar
  • 12.

    Klauber, L. M. Tail-length differences in snakes with notes on sexual dimorphism and the coefficient of divergence. Bull. Zool. Soc. San. Diego. 18, 1–60 (1943).

    • Google Scholar
  • 13.

    Clark, D. R. Jr. Notes on sexual dimorphism in tail-length in American snakes. Trans. Kans. Acad. Sci. 69, 226–232 (1966).

    • Article
    • Google Scholar
  • 14.

    King, R. B. Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biol. J. Linn. Soc. 38, 133–154 (1989).

    • Article
    • Google Scholar
  • 15.

    Sheehy, C. M. III, Albert, J. S. & Lillywhite, H. B. The evolution of tail length in snakes associated with different gravitational environments. Funct. Ecol. 30, 244–254 (2016).

    • Article
    • Google Scholar
  • 16.

    Heatwole, H. & Davison, E. A review of caudal luring in snakes with notes on its occurrence in the Saharan sand viper, Cerastes vipera. Herpetol. 32, 332–336 (1976).

    • Google Scholar
  • 17.

    Rabatsky, A. M. Caudal luring as a precursor in the evolution of the rattle: a test using an ancestral rattlesnake, Sisturus miliarius barbouri in The Biology of Rattlesnakes (eds. Hayes, W. K., Beaman, K.R., Cardwell, M. D., & Bush, S. P.) 143–154 (Loma Linda University Press, Loma Linda 2008).

  • 18.

    Shine, R., Olsson, M. M., Moore, I. T., LeMaster, M. P. & Mason, R. T. Why do male snakes have longer tails than females? Proc. Roy. Soc. B 266, 2147–2151 (1999).

    • Article
    • Google Scholar
  • 19.

    Clark, C. J. The role of power versus energy in courtship: what is the “energetic cost” of a courtship display? Anim. Behav. 84, 269–277 (2012).

    • Article
    • Google Scholar
  • 20.

    Darwin, C. On the Origin of Species by Means of Natural Selection (John Murray, London 1859).

  • 21.

    Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I. & Lavine, L. C. A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science 337, 860–864 (2012).

  • 22.

    Wilson, A. J. & Nussey, N. H. What is individual quality? An evolutionary perspective. TREE 25, 207–214 (2010).

    • Google Scholar
  • 23.

    Lailvaux, S. P. & Kasumovic, M. M. Defining individual quality over lifetimes and selective contexts. Proc. Roy. Soc. B 278, 321–328 (2011).

    • Article
    • Google Scholar
  • 24.

    McGuigan, K., Rowe, L. & Blows, M. W. Pleiotropy, apparent stabilizing selection and uncovering fitness optima. TREE 26, 22–29 (2011).

    • Google Scholar
  • 25.

    Hamel, S., Gaillard, J. M., Festa-Bianchet, M. & Côté, S. D. Individual quality, early life conditions, and reproductive success in contrasted populations of large herbivores. Ecology 90, 1981–1995 (2009).

    • Article
    • Google Scholar
  • 26.

    Hunt, J., Bussiere, L. F., Jennions, M. D. & Brooks, R. What is genetic quality? TREE 19, 329–333 (2004).

    • Google Scholar
  • 27.

    Darwin, C. The Descent of Man and Selection in Relation to Sex (Random House, Modern Library, New York 1871).

  • 28.

    Zahavi, A. Cost of honesty (further remarks on the handicap principle). J. Theoret. Biol. 67, 603–5 (1977).

  • 29.

    Hamel, S., Côté, S. D., Gaillard, J. M. & Festa-Bianchet, M. Individual variation in reproductive costs of reproduction: high quality females always do better. J. Anim. Ecol. 78, 143–151 (2009).

    • Article
    • Google Scholar
  • 30.

    Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).

    • Article
    • Google Scholar
  • 31.

    Aubret, F., Bonnet, X., Shine, R. & Lourdais, O. Fat is sexy for females but not males: The influence of body reserves on reproduction in snakes (Vipera aspis). Horm. Behav. 42, 135–147 (2002).

  • 32.

    Catherine, A. D., LeMaster, M. P. & Lutterschmidt, D. I. Physiological correlates of reproductive decisions: relationships among body condition, reproductive status, and the hypothalamus-pituitary-adrenal axis in a reptile. Horm. Behav. 100, 1–11 (2018).

  • 33.

    Lind, C. M. & Beaupre, S. J. Male snakes allocate time and energy according to individual energetic status: body condition, steroid hormones, and reproductive behavior in timber rattlesnakes, Crotalus horridus. Physiol. Biochem. Zool. 88, 624–633 (2015).

  • 34.

    Milenkaya, O., Catlin, D. H., Legge, S. & Walters, J. R. Body condition indices predict reproductive success but not survival in a sedentary, tropical bird. PLoS ONE 10, e0136582 (2015).

  • 35.

    Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: validating body condition indices. Ecology 86, 155–163 (2005).

    • Article
    • Google Scholar
  • 36.

    Waye, H. L. & Mason, R. T. A combination of body condition measurements is more informative than conventional condition indices: Temporal variation in body condition and testosterone in brown tree snakes (Boiga irregularis). Gen. Comp. Endocrinol. 155, 607–612 (2008).

  • 37.

    Valencia-Flores, E., Venegas-Barrera, C. S., Fajardo, V. & Manjarrez, J. Microgeographic variation in body condition of three Mexican garter snakes in central Mexico. PeerJ. 7, e6601 (2019).

  • 38.

    Bonnet, X. & Naulleau, G. Are body reserves important for reproduction in male Dark Green Snakes (Colubridae: Coluber viridiflavus)? Herpetologica 52, 137–146 (1996).

    • Google Scholar
  • 39.

    Andersson, M. Sexual Selection (New Jersey: Princeton University Press 1994).

  • 40.

    Pomiankowski, A. & Moller, A. P. A resolution of the lek paradox. Proc. Roy. Soc. B 260, 21–29 (1995).

  • 41.

    Sivan, J. et al. Body size and seasonal body condition in two small coexisting desert snake species, the Saharan sand viper (Cerastes vipera) and the crowned leafnose (Lytorhynchus diadema). J. Arid Environm. 114, 8–13 (2015).

  • 42.

    Shine, R. Reproductive strategies in snakes. Proc. Roy. Soc. B 270, 995–1004 (2003).

    • Article
    • Google Scholar
  • 43.

    Shine, R. & Mason, R. Do a male garter snake’s energy stores limit his reproductive effort? Can. J. Zool. 83, 1265–1270 (2005).

    • Article
    • Google Scholar
  • 44.

    Husak, J. F. & Swallow, J. G. Compensatory traits and the evolution of mate ornaments. Behaviour 148, 1–29 (2011).

    • Article
    • Google Scholar
  • 45.

    Zahavi, A. & Zahavi, A. The Handicap Principle: A Missing Piece of Darwin’s Puzzle (Oxford University Press 1997).

  • 46.

    Oufiero, C. E. & Garland, T. Jr. Evaluating performance costs of sexually selected traits. Funct. Ecol. 21, 676–689 (2007).

    • Article
    • Google Scholar
  • 47.

    Blanckenhorn, W. U. et al. Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169, 245–257 (2007).

  • 48.

    Reiss, M. J. Sexual dimorphism in body size: are larger species more dimorphic? J. Theoret. Biol. 121, 163–172 (1986).

  • 49.

    Abouheif, E. & Fairbairn, D. J. A comparative analysis of allometry for sexual size dimorphism: assessing Rensch’s rule. Am. Nat. 149, 540–562 (1997).

    • Article
    • Google Scholar
  • 50.

    Fairbairn, D. J. Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Ann. Rev. Ecol. Systemat. 28, 659–87 (1997).

    • Article
    • Google Scholar
  • 51.

    Werner, Y. L. Survey of Israel (1950–85) with comments on Sinai and Jordan and on zoogeographical heterogeneity in The Zoogeography of Israel (eds. Yom-Tov, Y. & Tchernov, E.) 355–388 (Junk Publishers, Dordrecht, Netherlands 1988).

  • 52.

    Sivan, J. et al. Temporal activity and dietary selection in two coexisting desert snakes, the Saharan sand viper (Cerastes vipera) and the crowned leafnose (Lytorhynchus diadema). Zoology 116, 113–117 (2013).

    • Article
    • Google Scholar
  • 53.

    Werner, Y. L. Reptile Life in the Land of Israel (Chimaira, Frankfurt, Germany 2016).

  • 54.

    Goldreich, Y. The Climate of Israel (Kluwer, New York 2003).

  • 55.

    Lazlo, J. Probing as a practical method of sex recognition in snakes. Int. Zoo Year. 15, 178–179 (1975).

    • Article
    • Google Scholar
  • 56.

    Marais, J. Probing and marking snakes. J. Herpetol. Assoc. Africa 30, 15–16 (1984).

    • Google Scholar
  • 57.

    Moore, I. T., Lerner, J. P., Lerner, D. T. & Mason, R. T. Relationships between annual cycles of testosterone, corticosterone, and body condition in male red-spotted garter snakes, Thamnophis sirtalis concinnus. Physiol. Biochem. Zool. 73, 307–312 (2000).

  • 58.

    Green, A. J. Mass/length residuals: measures of body condition or generators of spurious results? Ecology 82, 1473–1483 (2001).

    • Article
    • Google Scholar
  • 59.

    Bonnet, X., Shine, R., Naulleau, G. & Vacher-Vallas, M. Sexual dimorphism in snakes: different reproductive roles favour different body plans. Proc. of Roy. Soc. B 265, 179–183 (1998).

    • Article
    • Google Scholar
  • 60.

    Weatherhead, P. J. & Brown, T. Measurement versus estimation of condition in snakes. Can. J. Zool. 74, 1617–1621 (1996).

    • Article
    • Google Scholar
  • 61.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    • Article
    • Google Scholar
  • 62.

    McArdle, B. H. The structural relationship: regression in biology. Canadian J. Zool. 66, 2329–2339 (1988).

    • Article
    • Google Scholar
  • 63.

    Smith, R. J. Use and misuse of the reduced major axis for line-fitting. Am. J. Phys. Anthropol. 140, 476–486 (2009).

    • Article
    • Google Scholar
  • 64.

    Kilmer, J. T. & Rodriguez, R. L. Ordinary least squares regression is indicated for studies of allometry. J. Evolut. Biol. 30, 4–12 (2017).

  • 65.

    LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Ann. Rev. Ecol. Syst. 20, 97–117 (1989).

    • Article
    • Google Scholar
  • 66.

    Lovich, J. E. & Gibbons, J. W. A review of techniques for quantifying sexual size dimorphism. Growth Develop. Aging 56, 269–281 (1992).

    • CAS
    • Google Scholar

  • Source: Ecology - nature.com

    Climate change made Australia’s devastating fire season 30% more likely

    How to recycle lighting: LED bulbs, smart lights, mercury-containing lamps