in

Remote sensing northern lake methane ebullition

  • 1.

    Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    • CAS
    • Google Scholar
  • 2.

    Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–105 (2016).

    • CAS
    • Google Scholar
  • 3.

    Walter Anthony, K. M., Anthony, P., Grosse, G. & Chanton, J. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5, 419–426 (2012).

    • CAS
    • Google Scholar
  • 4.

    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009).

    • Google Scholar
  • 5.

    AMAP Assessment 2015: Methane as an Arctic Climate Forcer (AMAP, 2015).

  • 6.

    Bruhwiler, L. et al. CarbonTracker-CH4: an assimilation system for estimating emissions of atmospheric methane. Atmos. Chem. Phys. 14, 8269–8293 (2014).

    • Google Scholar
  • 7.

    Rigby, M. et al. Role of atmospheric oxidation in recent methane growth. Proc. Natl Acad. Sci. USA 114, 5373–5377 (2017).

    • CAS
    • Google Scholar
  • 8.

    Thornton, B. F., Wik, M. & Crill, P. M. Double-counting challenges the accuracy of high-latitude methane inventories. Geophys. Res. Lett. 43, 12569–12577 (2016).

    • CAS
    • Google Scholar
  • 9.

    Jørgensen, C. J., Lund, K. M. J., Westergaard‐Nielsen, A. & Elberling, B. Net regional methane sink in High Arctic soils of northeast Greenland. Nat. Geosci. 8, 20–23 (2015).

    • Google Scholar
  • 10.

    Peltola, O. et al. Monthly gridded data product of northern wetland methane emissions based on upscaling eddy covariance observations. Earth Syst. Sci. Data 11, 1263–1289 (2019).

    • Google Scholar
  • 11.

    Mastepanov, M. et al. Large tundra methane burst during onset of freezing. Nature 456, 628–630 (2008).

    • CAS
    • Google Scholar
  • 12.

    Wik, M., Crill, P. M., Varner, R. K. & Bastviken, D. Multiyear measurements of ebullitive methane flux from three subarctic lakes. J. Geophys. Res. Biogeosci. 118, 1307–1321 (2013).

    • Google Scholar
  • 13.

    Walter Anthony, K. M. & Anthony, P. Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models. J. Geophys. Res. Biogeosci. 118, 1015–1034 (2013).

  • 14.

    Lehner, B. & Dőll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).

    • Google Scholar
  • 15.

    Paltan, H., Dash, J. & Edwards, M. A refined mapping of Arctic lakes using Landsat imagery. Int. J. Remote Sens. 36, 5970–5982 (2015).

    • Google Scholar
  • 16.

    Lindgren, P. R., Grosse, G., Walter Anthony, K. M. & Meyer, F. J. Detection and spatiotemporal analysis of methane ebullition on thermokarst lake ice using high-resolution optical aerial imagery. Biogeosciences 13, 27–44 (2016).

    • CAS
    • Google Scholar
  • 17.

    Engram, M., Anthony, K. W., Meyer, F. J. & Grosse, G. Synthetic aperture radar (SAR) backscatter response from methane ebullition bubbles trapped by thermokarst lake ice. Can. J. Remote Sens. 38, 667–682 (2013).

    • Google Scholar
  • 18.

    Walter Anthony, K. M. et al. Estimating methane emissions from northern lakes using ice-bubble surveys. Limnol. Oceanogr. Methods 8, 592–609 (2010).

    • Google Scholar
  • 19.

    Rasilo, T., Prairie, Y. T. & del Giorgio, P. A. Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Glob. Change Biol. 21, 1124–1139 (2015).

    • Google Scholar
  • 20.

    Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    • Google Scholar
  • 21.

    Kessler, M. A., Plug, L. J. & Walter Anthony, K. M. Simulating the decadal- to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J. Geophys. Res. 117, G00M06 (2012).

    • Google Scholar
  • 22.

    Walter Anthony, K. et al. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nat. Geosci. 9, 679–682 (2016).

    • CAS
    • Google Scholar
  • 23.

    Walter Anthony, K. et al. 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat. Commun. 9, 3262 (2018).

    • Google Scholar
  • 24.

    Aben, R. C. H. et al. Cross continental increase in methane ebullition under climate change. Nat. Commun. 8, 1682 (2017).

    • Google Scholar
  • 25.

    Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E. & Boike, J. Remote sensing quantifies widespread abundance of permafrost region disturbances across the Arctic and Subarctic. Nat. Commun. 9, 5423 (2018).

    • CAS
    • Google Scholar
  • 26.

    Saunois, M. et al. The global methane budget: 2000–2012. Earth Syst. Sci. Data Discuss. 8, 54–81 (2016).

    • Google Scholar
  • 27.

    Arp, C. D. et al. Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys. Res. Lett. 43, 6358–6365 (2016).

    • Google Scholar
  • 28.

    Engram, M., Arp, C. D., Jones, B. M., Ajadi, O. A. & Meyer, F. J. Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens. Environ. 209, 660–676 (2018).

    • Google Scholar
  • 29.

    Surdu, C. M., Duguay, C. R., Brown, L. C. & Fernández Prieto, D. Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis. Cryosphere 8, 167–180 (2014).

    • Google Scholar
  • 30.

    DelSontro, T., Boutet, L., St-Pierre, A., del Giorgio, P. A. & Prairie, Y. T. Methane ebullition and diffusion from northern ponds and lakes regulated by the interaction between temperature and system productivity. Limnol. Oceanogr. 61, S62–S77 (2016).

    • CAS
    • Google Scholar
  • 31.

    Weeks, W. F., Fountain, A. G., Bryan, M. L. & Elachi, C. Differences in radar return from ice-covered North Slope lakes. J. Geophys. Res. 83, 4069–4073 (1978).

    • Google Scholar
  • 32.

    Jeffries, M. O., Morris, K., Weeks, W. F. & Wakabayashi, H. Structural and stratigraphic features and ERS-1 synthetic-aperture radar backscatter characteristics of ice growing on shallow lakes in NW Alaska, winter 1991–1992. J. Geophys. Res. Oceans 99, 22459–22471 (1994).

    • Google Scholar
  • 33.

    Hall, D. K., Fagre, D. B., Klasner, F., Linebaugh, G. & Liston, G. E. Analysis of ERS-1 synthetic-aperture-radar data of frozen lakes in northern Montana and implications for climate studies. J. Geophys. Res. Oceans 99, 22473–22482 (1994).

    • Google Scholar
  • 34.

    Mellor, J. Bathymetry of Alaskan Arctic Lakes: A Key to Resource Inventory with Remote Sensing Methods. PhD thesis, Institute of Marine Science, University of Alaska Fairbanks (1982).

  • 35.

    Duguay, C. R., Pultz, T. J., Lafleur, P. M. & Drai, D. RADARSAT backscatter characteristics of ice growing on shallow sub-Arctic lakes, Churchill, Manitoba, Canada. Hydrol. Process. 16, 1631–1644 (2002).

    • Google Scholar
  • 36.

    Walter, K. M., Engram, M., Duguay, C. R., Jeffries, M. O. & Chapin, F. S. The potential use of synthetic aperture radar for estimating methane ebullition from Arctic lake. J. Am. Water Resour. Assoc. 44, 305–315 (2008).

    • CAS
    • Google Scholar
  • 37.

    Lee, J.-S. & Pottier, E. in Polarimetric Radar Imaging: From Basics to Applications Vol. 1 (eds Lee, J.-S. & Pottier, E.) 265–299 (CRC Press Taylor & Francis Group, 2009).

  • 38.

    Leconte, R. et al. A controlled experiment to retrieve freshwater ice characteristics from an FM-CW radar system. Cold Reg. Sci. Technol. 55, 212–220 (2009).

    • Google Scholar
  • 39.

    Scandella, B. P., Varadharajan, C., Hemond, H. F., Ruppel, C. & Juanes, R. A conduit dilation model of methane venting from lake sediments. Geophys. Res. Lett. 38, L06408 (2011).

    • Google Scholar
  • 40.

    Greene, S., Walter Anthony, K. M., Archer, D., Sepulveda-Jauregui, A. & Martinez-Cruz, K. Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences 11, 6791–6811 (2014).

    • Google Scholar
  • 41.

    Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006).

    • CAS
    • Google Scholar
  • 42.

    Walter, K. M., Chanton, J. P., Chapin, F. S., Schuur, E. A. G. & Zimov, S. A. Methane production and bubble emissions from Arctic lakes: isotopic implications for source pathways and ages. J. Geophys. Res. Biogeosci. 113, G00A08 (2008).

    • Google Scholar
  • 43.

    Zimov, S. A. et al. in Permafrost Response on Economic Development, Environmental Security and Natural Resources, NATO Science Series, Vol. 76 (eds Paepe, R. & Melnikov, V.) 511–524 (Springer, 2001).

  • 44.

    Engram, M., Anthony, K. W., Meyer, F. J. & Grosse, G. Characterization of L-band synthetic aperture radar (SAR) backscatter from floating and grounded thermokarst lake ice in Arctic Alaska. Cryosphere 7, 1741–1752 (2013).

    • Google Scholar
  • 45.

    Serafimovich, A. et al. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions. Atmos. Chem. Phys. 18, 10007–10023 (2018).

    • Google Scholar
  • 46.

    Hartmann, J., Gehrmann, M., Kohnert, K., Metzger, S. & Sachs, T. New calibration procedures for airborne turbulence measurements and accuracy of the methane fluxes during the AirMeth campaigns. Atmos. Meas. Tech. 11, 4567–4581 (2018).

    • CAS
    • Google Scholar
  • 47.

    Aubinet., M., Vesala, T. & Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis (Springer Science & Business Media, 2012).

  • 48.

    Foken, T. & Napo, C. J. Micrometeorology (Springer, 2008).

  • 49.

    Metzger, S. et al. Spatially explicit regionalization of airborne flux measurements using environmental response functions. Biogeosciences 10, 2193–2217 (2013).

    • Google Scholar
  • 50.

    Kljun, N., Calanca, P., Rotach, M. W. & Schmid, H. P. A simple parameterisation for flux footprint predictions. Bound. Layer Meteorol. 112, 503–523 (2004).

    • Google Scholar
  • 51.

    Metzger, S. et al. Eddy-covariance flux measurements with a weight-shift microlight aircraft. Atmos. Meas. Tech. 5, 1699–1717 (2012).

    • Google Scholar
  • 52.

    Elith, J., Leathwick, J. R. & Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 77, 802–813 (2008).

    • CAS
    • Google Scholar
  • 53.

    Skamarock, W. C. et al. A Description of the Advanced Research WRF Version 3 NCAR Technical Note NCAR/TN-475+STR (UCAR, 2008).

  • 54.

    Jones, B. M. & Grosse, G. Western Arctic Coastal Plain, Lakes and Drainage Gradients (Arctic Landscape Conservation Cooperative, 2013); http://arcticlcc.org/products/spatial-data/show/western-arctic-coastal-plain-lakes-and-drainage-gradients

  • 55.

    Engram, M., Walter Anthony, K. M., & Meyer, F.J. SAR-based Lake Ebullition Estimates for Five Alaska Regions (Oak Ridge National Laboratory NASA Distributed Active Archive Center, 2020); https://doi.org/10.3334/ORNLDAAC/1790


  • Source: Ecology - nature.com

    Kerry Emanuel, David Sabatini, and Peter Shor receive BBVA Frontiers of Knowledge awards

    3 Questions: Harnessing wave power to rebuild islands