in

Reply to: Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat

  • 1.

    Stibal, M. et al. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1163-0 (2020).

  • 2.

    Cauvy-Fraunié, S. & Dangles, O. A global synthesis of biodiversity responses to glacier retreat. Nat. Ecol. Evol. 3, 1675–1685 (2019).

    • Article
    • Google Scholar
  • 3.

    Borenstein, M., Hedges, L. V., Higgins, J. P. & Rothstein, H. R. Introduction to Meta-Analysis (John Wiley & Sons, 2009).

  • 4.

    Nakagawa, S., Noble, D. W., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).

  • 5.

    Wilhelm, L., Singer, G. A., Fasching, C., Battin, T. J. & Besemer, K. Microbial biodiversity in glacier-fed streams. ISME J. 7, 1651–1660 (2013).

  • 6.

    Lydersen, C. et al. The importance of tidewater glaciers for marine mammals and seabirds in Svalbard, Norway. J. Mar. Syst. 129, 452–471 (2014).

    • Article
    • Google Scholar
  • 7.

    Hardy, S. P., Hardy, D. R. & Gil, K. C. Avian nesting and roosting on glaciers at high elevation, Cordillera Vilcanota, Peru. Wilson J. Ornithol. 130, 940–957 (2018).

    • Article
    • Google Scholar
  • 8.

    Franzetti, A. et al. Potential sources of bacteria colonizing the cryoconite of an Alpine glacier. PLoS ONE 12, e0174786 (2017).

  • 9.

    Coulson, S. & Midgley, N. The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland. Polar Biol. 35, 1651–1658 (2012).

    • Article
    • Google Scholar
  • 10.

    Jacobsen, D. & Dangles, O. Ecology of High Altitude Waters (Oxford Univ. Press, 2017).

  • 11.

    Dussaillant, I. et al. Two decades of glacier mass loss along the Andes. Nat. Geosci. 12, 802–808 (2019).

  • 12.

    Permana, D. S. et al. Disappearance of the last tropical glaciers in the Western Pacific Warm Pool (Papua, Indonesia) appears imminent. Proc. Natl Acad. Sci. USA 116, 26382–26388 (2019).

  • 13.

    Rabatel, A. et al. Toward an imminent extinction of Colombian glaciers? Geogr. Ann. Ser. A 100, 75–95 (2018).

    • Article
    • Google Scholar
  • 14.

    Lencioni, V., Jousson, O., Guella, G. & Bernabò, P. Cold adaptive potential of chironomids overwintering in a glacial stream. Physiol. Entomol. 40, 43–53 (2015).

  • 15.

    Buzzini, P., Branda, E., Goretti, M. & Turchetti, B. Psychrophilic yeasts from worldwide glacial habitats: diversity, adaptation strategies and biotechnological potential. FEMS Microbiol. Ecol. 82, 217–241 (2012).

  • 16.

    Cook, J. M. et al. Quantifying bioalbedo: a new physically based model and discussions of empirical methods for characterising biological influence on ice and snow albedo. Cryosphere 11, 2611–2632 (2017).

    • Article
    • Google Scholar
  • 17.

    Wang, Y. et al. Potential feedback mediated by soil microbiome response to warming in a glacier forefield. Glob. Change Biol. 26, 697–708 (2019).

  • 18.

    Peck, L. S., Barnes, D. K., Cook, A. J., Fleming, A. H. & Clarke, A. Negative feedback in the cold: ice retreat produces new carbon sinks in Antarctica. Glob. Change Biol. 16, 2614–2623 (2010).

    • Article
    • Google Scholar

  • Source: Ecology - nature.com

    Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming

    Discerning the texture of urban resilience