in

Representing the function and sensitivity of coastal interfaces in Earth system models

  • 1.

    US Department of Energy. Research priorities to incorporate terrestrial–aquatic interfaces in Earth system models workshop (DOE, 2017).

  • 2.

    Canuel, E. A., Cammer, S. S., McIntosh, H. A. & Pondell, C. R. Climate change impacts on the organic carbon cycle at the land–ocean interface. Annu. Rev. Earth Planet. Sci. 40, 685–711 (2012).

  • 3.

    Costanza, R. et al. Twenty years of ecosystem services: how far have we come and how far do we still need to go? Ecosyst. Serv. 28, 1–16 (2017).

    • Article
    • Google Scholar
  • 4.

    Martínez, M. L. et al. The coasts of our world: ecological, economic and social importance. Ecol. Econ. 63, 254–272 (2007).

    • Article
    • Google Scholar
  • 5.

    International Chamber of Shipping. Shipping and world trade. ICS https://www.ics-shipping.org/shipping-facts/shipping-and-world-trade (2020).

  • 6.

    Kulp, S. A. & Strauss, B. H. New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding. Nat. Commun. 10, 4844 (2019).

  • 7.

    Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

  • 8.

    Windham-Myers, L. et al. in Second state of the carbon cycle report. Ch. 15 (eds Cavallaro, N. et al.) 596–648 (US Global Change Research Program, 2018).

  • 9.

    Najjar, R. G. et al. Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America. Glob. Biogeochem. Cycles 32, 389–416 (2018).

  • 10.

    Ward, N. D. et al. Where carbon goes when water flows: carbon cycling across the aquatic continuum. Front. Mar. Sci. 4, GB4007 (2017).

    • Google Scholar
  • 11.

    Canuel, E. A. & Hardison, A. K. Sources, ages, and alteration of organic matter in estuaries. Annu. Rev. Mar. Sci. 8, 409–434 (2016).

  • 12.

    Krause, S. et al. Ecohydrological interfaces as hot spots of ecosystem processes. Water Resour. Res. 53, 6359–6376 (2017).

  • 13.

    McClain, M. E. et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6, 301–312 (2003).

  • 14.

    McGuire, A. D. et al. Carbon balance of the terrestrial biosphere in the Twentieth Century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001).

  • 15.

    Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

  • 16.

    Langley, A. J., Mozdzer, T. J., Shepard, K. A., Hagerty, S. B. & Patrick Megonigal, J. Tidal marsh plant responses to elevated CO2, nitrogen fertilization, and sea level rise. Glob. Change Biol. 19, 1495–1503 (2013).

  • 17.

    Chen, C., Liu, H. & Beardsley, R. C. An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 20, 159–186 (2003).

  • 18.

    Fagherazzi, S. et al. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev. Geophys. 50, 85 (2012).

    • Article
    • Google Scholar
  • 19.

    Clark, J. B., Neale, P., Tzortziou, M., Cao, F. & Hood, R. R. A mechanistic model of photochemical transformation and degradation of colored dissolved organic matter. Mar. Chem. 214, 103666 (2019).

  • 20.

    Hoitink, A. J. F. & Jay, D. A. Tidal river dynamics: implications for deltas. Rev. Geophys. 54, 240–272 (2016).

  • 21.

    Befus, K. M., Kroeger, K. D., Smith, C. G. & Swarzenski, P. W. The magnitude and origin of groundwater discharge to eastern US and Gulf of Mexico coastal waters. Geophys. Res. Lett. 44, 10–396 (2017).

    • Google Scholar
  • 22.

    Atkins, M. L., Santos, I. R., Ruiz-Halpern, S. & Maher, D. T. Carbon dioxide dynamics driven by groundwater discharge in a coastal floodplain creek. J. Hydrol. 493, 30–42 (2013).

  • 23.

    Geyer, W. R. & MacCready, P. The estuarine circulation. Annu. Rev. Fluid Mech. 46, 175–197 (2014).

  • 24.

    Ensign, S. H. & Noe, G. B. Tidal extension and sea-level rise: recommendations for a research agenda. Front. Ecol. Environ. 16, 37–43 (2018).

    • Article
    • Google Scholar
  • 25.

    Sengupta, A. et al. Spatial gradients in soil-carbon character of a coastal forested floodplain are associated with abiotic features, but not microbial communities. Biogeosciences 16, 3911–3928 (2019).

  • 26.

    Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar. Coast. Shelf Sci. 164, 367–378 (2015).

  • 27.

    Tzortziou, M. et al. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol. Oceanogr. 53, 148–159 (2008).

  • 28.

    Jay, D. A., Borde, A. B. & Diefenderfer, H. L. Tidal-fluvial and estuarine processes in the lower Columbia river: II. Water level models, floodplain wetland inundation, and system zones. Estuaries Coasts 39, 1299–1324 (2016).

    • Article
    • Google Scholar
  • 29.

    Crain, C. M., Silliman, B. R., Bertness, S. L. & Bertness, M. D. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85, 2539–2549 (2004).

    • Article
    • Google Scholar
  • 30.

    Walker, S. et al. Properties of ecotones: evidence from five ecotones objectively determined from a coastal vegetation gradient. J. Veg. Sci. 14, 579–590 (2003).

    • Article
    • Google Scholar
  • 31.

    Field, C. R., Gjerdrum, C. & Elphick, C. S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 201, 363–369 (2016).

    • Article
    • Google Scholar
  • 32.

    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).

  • 33.

    Hughes, A. R. Genotypic diversity and trait variance interact to affect marsh plant performance. J. Ecol. 102, 651–658 (2014).

    • Article
    • Google Scholar
  • 34.

    Soranno, P. A. et al. Cross-scale interactions: quantifying multi-scaled cause–effect relationships in macrosystems. Front. Ecol. Environ. 12, 65–73 (2014).

    • Article
    • Google Scholar
  • 35.

    Sawakuchi, H. O. et al. Carbon dioxide emissions along the lower Amazon River. Front. Mar. Sci. 4, 395 (2017).

    • Article
    • Google Scholar
  • 36.

    Spivak, A. C., Sanderman, J., Bowen, J. L., Canuel, E. A. & Hopkinson, C. S. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nat. Geosci. 12, 685–692 (2019).

  • 37.

    Hopkinson, C. S., Cai, W.-J. & Hu, X. Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Curr. Opin. Environ. Sustain. 4, 186–194 (2012).

    • Article
    • Google Scholar
  • 38.

    Ward, N. D. et al. Marine microbial responses related to wetland carbon mobilization in the coastal zone. Limnol. Oceanogr. Lett. 4, 25–33 (2019).

  • 39.

    Chen, S., Torres, R. & Goñi, M. A. Intertidal zone particulate organic carbon redistribution by low-tide rainfall. Limnol. Oceanogr. 60, 1088–1101 (2015).

  • 40.

    Doherty, M. et al. Bacterial biogeography across the Amazon river–ocean continuum. Front. Microbiol. 8, 882 (2017).

  • 41.

    Ramírez-Flandes, S., González, B. & Ulloa, O. Redox traits characterize the organization of global microbial communities. Proc. Natl Acad. Sci. USA 116, 3630–3635 (2019).

  • 42.

    Smith, A. P. et al. Shifts in pore connectivity from precipitation versus groundwater rewetting increases soil carbon loss after drought. Nat. Commun. 8, 1335 (2017).

  • 43.

    Morrissey, E. M., Gillespie, J. L., Morina, J. C. & Franklin, R. B. Salinity affects microbial activity and soil organic matter content in tidal wetlands. Glob. Change Biol. 20, 1351–1362 (2014).

  • 44.

    Franklin, R. B., Morrissey, E. M. & Morina, J. C. Changes in abundance and community structure of nitrate-reducing bacteria along a salinity gradient in tidal wetlands. Pedobiologia 60, 21–26 (2017).

    • Article
    • Google Scholar
  • 45.

    Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).

    • Article
    • Google Scholar
  • 46.

    Capooci, M., Barba, J., Seyfferth, A. L. & Vargas, R. Experimental influence of storm-surge salinity on soil greenhouse gas emissions from a tidal salt marsh. Sci. Total Environ. 686, 1164–1172 (2019).

  • 47.

    Hu, Y. et al. Variability in soil microbial community and activity between coastal and riparian wetlands in the Yangtze River estuary—potential impacts on carbon sequestration. Soil Biol. Biochem. 70, 221–228 (2014).

  • 48.

    Neubauer, S. C., Franklin, R. B. & Berrier, D. J. Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences 10, 8171–8183 (2013).

  • 49.

    Kearns, P. J., Weston, N. B., Bowen, J. L., Živković, T. & Vile, M. A. Tidal freshwater marshes harbor phylogenetically unique clades of sulfate reducers that are resistant to climate-change-induced salinity intrusion. Estuaries Coasts 39, 981–991 (2016).

  • 50.

    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).

  • 51.

    Vázquez-Lule, A. et al. Greenness trends and carbon stocks of mangroves across Mexico. Environ. Res. Lett. 14, 075010 (2019).

  • 52.

    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293 (2011).

  • 53.

    Smith, R. W., Bianchi, T. S., Allison, M., Savage, C. & Galy, V. High rates of organic carbon burial in fjord sediments globally. Nat. Geosci. 8, 450 (2015).

  • 54.

    Khangaonkar, T., Nugraha, A., Xu, W. & Balaguru, K. Salish Sea response to global climate change, sea level rise, and future nutrient loads. J. Geophys. Res. Oceans 124, 3876–3904 (2019).

  • 55.

    Bianchi, T. S. et al. Centers of organic carbon burial and oxidation at the land-ocean interface. Org. Geochem. 115, 138–155 (2018).

  • 56.

    Lee, H. et al. Sustained wood burial in the Bengal Fan over the last 19 My. Proc. Natl Acad. Sci. USA 116, 22518–22525 (2019).

  • 57.

    Paerl, H. W. et al. Recent increase in catastrophic tropical cyclone flooding in coastal North Carolina, USA: long-term observations suggest a regime shift. Sci. Rep. 9, 10620 (2019).

  • 58.

    Loughner, C. P., Tzortziou, M., Shroder, S. & Pickering, K. E. Enhanced dry deposition of nitrogen pollution near coastlines: a case study covering the Chesapeake Bay estuary and Atlantic Ocean coastline. J. Geophys. Res. Atmos. 121, 14–221 (2016).

  • 59.

    Diefenderfer, H. L., Cullinan, V. I., Borde, A. B., Gunn, C. M. & Thom, R. M. High-frequency greenhouse gas flux measurement system detects winter storm surge effects on salt marsh. Glob. Change Biol. 24, 5961–5971 (2018).

    • Article
    • Google Scholar
  • 60.

    Northrup, K., Capooci, M. & Seyfferth, A. L. Effects of extreme events on arsenic cycling in salt marshes. J. Geophys. Res. Biogeosci. 123, 1086–1100 (2017).

  • 61.

    Cardon, Z. G. & Gage, D. J. Resource exchange in the rhizosphere: molecular tools and the microbial perspective. Annu. Rev. Ecol. Evol. Syst. 37, 459–488 (2006).

    • Article
    • Google Scholar
  • 62.

    Torres, R., Goñi, M. A., Voulgaris, G., Lovell, C. R. & Morris, J. T. Effects of low tide rainfall on intertidal zone material cycling. Coast. Estuar. Stud. 59, 93–114 (2013).

    • Article
    • Google Scholar
  • 63.

    Melton, J. R. et al. Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences 10, 753–788 (2013).

  • 64.

    Zhang, B. et al. Methane emissions from global wetlands: an assessment of the uncertainty associated with various wetland extent data sets. Atmos. Environ. 165, 310–321 (2017).

  • 65.

    Barba, J. et al. Comparing ecosystem and soil respiration: review and key challenges of tower-based and soil measurements. Agric. Meteorol. 249, 434–443 (2018).

    • Article
    • Google Scholar
  • 66.

    Bernhardt, E. S. et al. Control points in ecosystems: moving beyond the hot spot hot moment concept. Ecosystems 20, 665–682 (2017).

    • Article
    • Google Scholar
  • 67.

    Borics, G., Várbíró, G. & Padisák, J. Disturbance and stress: different meanings in ecological dynamics? Hydrobiologia 711, 1–7 (2013).

    • Article
    • Google Scholar
  • 68.

    Collins, S. L. et al. An integrated conceptual framework for long‐term social–ecological research. Front. Ecol. Environ. 9, 351–357 (2011).

    • Article
    • Google Scholar
  • 69.

    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).

  • 70.

    Fassbender, A. J., Sabine, C. L. & Palevsky, H. I. Nonuniform ocean acidification and attenuation of the ocean carbon sink. Geophys. Res. Lett. 44, 8404–8413 (2017).

  • 71.

    Bianchi, T. S. et al. The experimental flow to the Colorado River delta: effects on carbon mobilization in a dry watercourse. J. Geophys. Res. Biogeosci. 122, 607–627 (2017).

    • Article
    • Google Scholar
  • 72.

    Paerl, H. W. et al. Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry 141, 307–332 (2018).

  • 73.

    Tian, B., Zhou, Y.-X., Thom, R. M., Diefenderfer, H. L. & Yuan, Q. Detecting wetland changes in Shanghai, China using FORMOSAT and Landsat TM imagery. J. Hydrol. 529, 1–10 (2015).

  • 74.

    Ward, N. D., Richey, J. E. & Keil, R. G. Temporal variation in river nutrient and dissolved lignin phenol concentrations and the impact of storm events on nutrient loading to Hood Canal, Washington, USA. Biogeochemistry 111, 629–645 (2012).

  • 75.

    Lagomasino, D. et al. Measuring mangrove carbon loss and gain in deltas. Environ. Res. Lett. 14, 025002 (2019).

  • 76.

    Pendleton, L. et al. Estimating global ‘blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

  • 77.

    Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253 (2016).

  • 78.

    Fagherazzi, S., Mariotti, G., Wiberg, P. L. & Mcglathery, K. J. Marsh collapse does not require sea level rise. Oceanography 26, 70–77 (2013).

    • Article
    • Google Scholar
  • 79.

    Ganju, N. K., Defne, Z., Elsey‐Quirk, T. & Moriarty, J. M. Role of tidal wetland stability in lateral fluxes of particulate organic matter and carbon. J. Geophys. Res. Biogeosci. 58, 147 (2019).

    • Google Scholar
  • 80.

    Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).

  • 81.

    Leonardi, N., Ganju, N. K. & Fagherazzi, S. A linear relationship between wave power and erosion determines salt-marsh resilience to violent storms and hurricanes. Proc. Natl. Acad. Sci. USA 113, 64–68 (2016).

  • 82.

    Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

  • 83.

    Theuerkauf, E. J. & Rodriguez, A. B. Placing barrier-island transgression in a blue-carbon context. Earth’s Future 5, 789–810 (2017).

  • 84.

    Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Change Biol. 20, 147–157 (2014).

  • 85.

    Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coasts 39, 385–396 (2016).

  • 86.

    Coldren, G. A., Langley, J. A., Feller, I. C. & Chapman, S. K. Warming accelerates mangrove expansion and surface elevation gain in a subtropical wetland. J. Ecol. 107, 79–90 (2019).

    • Article
    • Google Scholar
  • 87.

    Servais, S. et al. Saltwater intrusion and soil carbon loss: testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands. Geoderma 337, 1291–1300 (2019).

  • 88.

    Armitage, A. R., Highfield, W. E., Brody, S. D. & Louchouarn, P. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast. PLoS ONE 10, e0125404 (2015).

  • 89.

    McDowell, N. G. et al. Predicting chronic climate-driven disturbances and their mitigation. Trends Ecol. Evol. 33, 15–27 (2018).

  • 90.

    Golaz, J. et al. The DOE E3SM coupled model version 1: overview and evaluation at standard resolution. J. Adv. Model. Earth Syst. 108, 1 (2019).

    • Google Scholar
  • 91.

    Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013).

  • 92.

    Wilson, A. M. & Morris, J. T. The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 108, 27–38 (2012).

    • Article
    • Google Scholar
  • 93.

    Chen, S.-N., Rockwell Geyer, W., Ralston, D. K. & Lerczak, J. A. Estuarine exchange flow quantified with isohaline coordinates: contrasting long and short estuaries. J. Phys. Oceanogr. 42, 748–763 (2012).

  • 94.

    Clark, M. P. et al. Improving the representation of hydrologic processes in Earth System Models. Water Resour. Res. 51, 5929–5956 (2015).

  • 95.

    Martyr-Koller, R. C. et al. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuar. Coast. Shelf Sci. 192, 86–107 (2017).

  • 96.

    Thom, R. M., Breithaupt, S. A. & Diefenderfer, H. L. Storm-driven particulate organic matter flux connects a tidal tributary floodplain wetland, mainstem river, and estuary. Ecol. Appl. 28, 1420–1434 (2018).

  • 97.

    Kelly, D. M., Teng, Y.-C., Li, Y. & Zhang, K. A numerical model for storm surges that involve the inundation of complex landscapes. Coast. Eng. J. 57, 1550017 (2015).

    • Article
    • Google Scholar
  • 98.

    Clark, J. B., Long, W., Tzortziou, M., Neale, P. J. & Hood, R. R. Wind-driven dissolved organic matter dynamics in a Chesapeake Bay tidal marsh-estuary system. Estuaries Coasts 41, 708–723 (2018).

  • 99.

    Mulligan, A. E., Langevin, C. & Post, V. E. A. Tidal boundary conditions in SEAWAT. Ground Water 49, 866–879 (2011).

  • 100.

    Simmons, C. T., Fenstemaker, T. R. & Sharp, J. M. Jr. Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J. Contam. Hydrol. 52, 245–275 (2001).

  • 101.

    Zhang, K., Li, Y., Liu, H., Rhome, J. & Forbes, C. Transition of the coastal and estuarine storm tide model to an operational storm surge forecast model: a case study of the Florida coast. Weather Forecast. 28, 1019–1037 (2013).

  • 102.

    Chen, C. et al. Tidal dynamics in the Gulf of Maine and New England shelf: an application of FVCOM. J. Geophys. Res. 116, 3175 (2011).

  • 103.

    Yang, Z. & Khangaonkar, T. Multi-scale modeling of Puget Sound using an unstructured-grid coastal ocean model: from tide flats to estuaries and coastal waters. Ocean Dyn. 60, 1621–1637 (2010).

  • 104.

    Buchanan, M. K., Kopp, R. E., Oppenheimer, M. & Tebaldi, C. Allowances for evolving coastal flood risk under uncertain local sea-level rise. Clim. Change 137, 347–362 (2016).

  • 105.

    Huo, X., Gupta, H., Niu, G., Gong, W. & Duan, Q. Parameter sensitivity analysis for computationally‐intensive spatially‐distributed dynamical environmental systems models. J. Adv. Model. Earth Syst. 11, 2896–2909 (2019).

  • 106.

    Hopkinson, C. S., Lugo, A. E., Alber, M., Covich, A. P. & Van Bloem, S. J. Forecasting effects of sea-level rise and windstorms on coastal and inland ecosystems. Front. Ecol. Environ. 6, 255–263 (2008).

    • Article
    • Google Scholar
  • 107.

    Steel, R. J. & Milliken, K. L. Major advances in siliciclastic sedimentary geology, 1960–2012. Web Geol. Sci. 500, 121–166 (2013).

  • 108.

    Baatz, R. et al. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling. Earth Syst. Dyn. 9, 593–609 (2018).

  • 109.

    Loescher, H. W., Kelly, E. F. & Lea, R. in Terrestrial Ecosystem Research Infrastructures (Chabbi, A. & Loescher, H. W.) 51–76 (CRC, 2017).

  • 110.

    Tan, Z. et al. A Global data analysis for representing sediment and particulate organic carbon yield in Earth System Models. Water Resour. Res. 53, 10674–10700 (2017).

  • 111.

    Shiklomanov, A. N. et al. Enhancing global change experiments through integration of remote‐sensing techniques. Front. Ecol. Environ. 17, 215–224 (2019).

    • Article
    • Google Scholar
  • 112.

    Mélin, F. & Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 160, 235–251 (2015).

  • 113.

    Cao, F. et al. Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins. Remote Sens. Environ. 205, 151–165 (2018).

  • 114.

    Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D. & Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 156, 157–168 (2015).

  • 115.

    Curran, P. J. & Novo, E. The relationship between suspended sediment concentration and remotely sensed spectral radiance—a review. J. Coast. Res. 4, 351–368 (1988).

    • Google Scholar
  • 116.

    Volpe, V., Silvestri, S. & Marani, M. Remote sensing retrieval of suspended sediment concentration in shallow waters. Remote Sens. Environ. 115, 44–54 (2011).

  • 117.

    Overeem, I. et al. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci. 10, 859 (2017).

  • 118.

    Joshi, I. et al. Seasonal trends in surface pCO2 and air-sea CO2 fluxes in Apalachicola Bay, Florida from VIIRS ocean color. J. Geophys. Res. Biogeosci. 123, 2466–2484 (2018).

  • 119.

    Buffington, K. J., Dugger, B. D., Thorne, K. M. & Takekawa, J. Y. Statistical correction of lidar-derived digital elevation models with multispectral airborne imagery in tidal marshes. Remote Sens. Environ. 186, 616–625 (2016).

  • 120.

    Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45 (2019).

  • 121.

    Oliver-Cabrera, T. & Wdowinski, S. InSAR-based mapping of tidal inundation extent and amplitude in Louisiana coastal wetlands. Remote Sens. 8, 393 (2016).

  • 122.

    Pickering, M. D. et al. The impact of future sea-level rise on the global tides. Cont. Shelf Res. 142, 50–68 (2017).

  • 123.

    Turki, I., Laignel, B., Chevalier, L., Costa, S. & Massei, N. On the investigation of the sea-level variability in coastal zones using SWOT satellite mission: example of the eastern English Channel (western France). IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 8, 1564–1569 (2015).

  • 124.

    Jensen, D. et al. Improving the transferability of suspended solid estimation in wetland and deltaic waters with an empirical hyperspectral approach. Remote Sens. 11, 1629 (2019).

  • 125.

    Medlyn, B. E. et al. Using ecosystem experiments to improve vegetation models. Nat. Clim. Change 5, 528 (2015).

  • 126.

    Lu, M., Herbert, E. R., Adam Langley, J., Kirwan, M. L. & Patrick Megonigal, J. Nitrogen status regulates morphological adaptation of marsh plants to elevated CO2. Nat. Clim. Change 9, 764–768 (2019).

  • 127.

    Zimmerman, R. C. et al. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 566, 1–15 (2017).

  • 128.

    Tang, G. et al. Biogeochemical modeling of CO2 and CH4 production in anoxic Arctic soil microcosms. Biogeosciences 13, 5021–5041 (2016).

  • 129.

    Wilson, R. M. et al. Stability of peatland carbon to rising temperatures. Nat. Commun. 7, 13723 (2016).

  • 130.

    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).


  • Source: Ecology - nature.com

    Melting glaciers cool the Southern Ocean

    3 Questions: Energy studies at MIT and the next generation of energy leaders