in

Resistance of seagrass habitats to ocean acidification via altered interactions in a tri-trophic chain

  • 1.

    Bascompte, J., Melián, C. J. & Sala, E. Interaction strength combinations and the overfishing of a marine food web. Proc. Natl. Acad. Sci. USA 102, 5443–5447 (2005).

  • 2.

    Paine, R. T. Food webs: linkage, interaction strength and community infrastructure. J. Anim. Ecol. 49, 667–685 (1980).

  • 3.

    Rip, J. M. K., McCann, K. S., Lynn, D. H. & Fawcett, S. An experimental test of a fundamental food web motif. Proc. R. Soc. B 277, 1743–1749 (2010).

  • 4.

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

  • 5.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

  • 6.

    Gunderson, A. R., Tsukimura, B. & Stillman, J. H. Indirect effects of global change: from physiological and behavioural mechanisms to ecological consequences. Integr. Comp. Biol. 57, 48–54 (2017).

  • 7.

    Agostini, S. et al. Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical-temperate transition zone. Sci. Rep. 8, 11354 (2018).

  • 8.

    Provost, E. J. et al. Climate-driven disparities among ecological interactions threaten kelp forest persistence. Glob. Change Biol. 23, 353–361 (2017).

  • 9.

    Kroeker, K. J., Micheli, F. & Gambi, M. C. Ocean acidification causes ecosystem shifts via altered competitive interactions. Nat. Clim. Chang. 3, 156–159 (2013).

  • 10.

    Martínez-Crego, B., Olivé, I. & Santos, R. CO2 and nutrient-driven changes across multiple levels of organization in Zostera noltii ecosystems. Biogeosciences 11, 7237–7249 (2014).

  • 11.

    Vizzini, S. et al. Ocean acidification as a driver of community simplification via the collapse of higher-order and rise of lower-order consumers. Sci. Rep. 7, 4018 (2017).

  • 12.

    Connell, S. D. et al. The duality of ocean acidification as a resource and a stressor. Ecology 99, 1005–1010 (2018).

  • 13.

    Ghedini, G., Russell, B. D. & Connell, S. D. Trophic compensation reinforces resistance: herbivory absorbs the increasing effects of multiple disturbances. Ecol. Lett. 18, 182–187 (2015).

  • 14.

    Ghedini, G. & Connell, S. D. Organismal homeostasis buffers the effects of abiotic change on community dynamics. Ecology 97, 2671–2679 (2016).

  • 15.

    Maxwell, P. S. et al. The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review. Biol. Rev. 92, 1521–1538 (2017).

  • 16.

    Prado, P., Tomas, F., Alcoverro, T. & Romero, J. Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Mar. Ecol. Prog. Ser. 340, 63–71 (2007).

  • 17.

    Sala, E. Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean Sea. Mar. Biol. 129, 531–539 (1997).

    • Article
    • Google Scholar
  • 18.

    Guidetti, P. Consumers of sea urchins, Paracentrotus lividus and Arbacia lixula, in shallow Mediterranean rocky reefs. Helgol. Mar. Res. 58, 110–116 (2004).

  • 19.

    Goldenberg, S. U. et al. Ecological complexity buffers the impacts of future climate on marine consumers. Nat. Clim. Chang. 8, 229–233 (2018).

  • 20.

    Mancinelli, G., Vizzini, V., Mazzola, A., Maci, S. & Basset, A. Cross-validation of δ15N and FishBase estimates of fish trophic position in a Mediterranean lagoon: The importance of the isotopic baseline. Estuar. Coast. Shelf Sci. 135, 77–85 (2013).

  • 21.

    Elser, J. J. & Urabe, J. The stoichiometry of consumer-driven nutrient recycling: theory, observations, and consequences. Ecology 80, 735–751 (1999).

    • Article
    • Google Scholar
  • 22.

    Sterner, R. W. & Hessen, D. O. Algal nutrient limitation and the nutrition of aquatic herbivores. Annu. Rev. Ecol. Syst. 25, 1–29 (1994).

  • 23.

    Prado, P., Alcoverro, T. & Romero, J. Influence of nutrients in the feeding ecology of seagrass (Posidonia oceanica L.) consumers: a stable isotopes approach. Mar. Biol. 157, 715–724 (2010).

    • Article
    • Google Scholar
  • 24.

    Nogueira, P. et al. Altered epiphyte community and sea urchin diet in Posidonia oceanica meadows in the vicinity of volcanic CO2 vents. Mar. Environ. Res. 127, 102–111 (2017).

  • 25.

    Vergés, A., Alcoverro, T. & Romero, J. Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers. Oecologia 166, 381–390 (2011).

  • 26.

    Marco-Méndez, C. et al. Epiphyte presence and seagrass species identity influence rates of herbivory in Mediterranean seagrass meadows. Estuar. Coast. Shelf Sci. 154, 94–101 (2015).

  • 27.

    Vergés, A., Becerro, M. A., Alcoverro, T. & Romero, J. Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant-herbivory interactions. Oecologia 151, 675–686 (2007).

  • 28.

    Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Change Biol. 21, 4021–4030 (2015).

  • 29.

    Mazzella, L., Scipione, M. B. & Buia, M. C. Spatio-temporal distribution of algal and animal communities in a Posidonia oceanica meadow. PSZN Mar. Ecol. 10, 107–129 (1989).

    • Article
    • Google Scholar
  • 30.

    Mazzella, L. et al. Plant-animal trophic relationships in the Posidonia oceanica ecosystem of the Mediterranean Sea: a review. Chapter 8 in Plant-animal Interactions in the Marine Benthos (Eds. John, D. M., Hawkins, S. J., Price, J. H.), 165–187 (Systematics Association Special Volume 46, Clarendon Press, Oxford, 1992).

  • 31.

    Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Russell, B. D. & Connell, S. D. Species interactions drive fish biodiversity loss in a high-CO2 world. Curr. Biol. 27, 2177–2184 (2017).

  • 32.

    Doubleday, Z. A., Nagelkerken, I., Coutts, M. D., Goldenberg, S. U. & Connell, S. D. A triple trophic boost: how carbon emissions indirectly change a marine food chain. Glob. Change Biol. 25, 978–984 (2019).

  • 33.

    Nielsen, J. M. et al. Diet tracing in ecology: method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).

    • Article
    • Google Scholar
  • 34.

    Garrard, S. et al. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J. Exp. Mar. Biol. Ecol. 461, 31–38 (2014).

    • Article
    • Google Scholar
  • 35.

    Connell, S. D., Kroeker, K. J., Fabricius, K. E., Kline, D. I. & Russell, B. D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Phil. Trans. R. Soc. B 368, 20120442 (2013).

  • 36.

    Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).

  • 37.

    Cattano, C., Claudet, J., Domenici, P. & Milazzo, M. Living in a high CO2 world: a global meta-analysis shows multiple trait-mediated fish responses to ocean acidification. Ecol. Monogr. 88, 320–335 (2018).

    • Article
    • Google Scholar
  • 38.

    Nagelkerken, I. & Munday, P. L. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Glob. Change Biol. 22, 974–989 (2016).

  • 39.

    Donnarumma, L., Lombardi, C., Cocito, S. & Gambi, M. C. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 15/2, 498–509 (2014).

    • Article
    • Google Scholar
  • 40.

    Garrard, S. L. The effect of ocean acidification on plant- animal interactions in a Posidonia oceanica meadow. PhD these (The Open University Milton Keynes, UK, 2013).

  • 41.

    Arnold, T. et al. Ocean acidification and the loss of phenolic substances in marine plants. PLoS One 7, e35107 (2012).

  • 42.

    Kroeker, K. J., Gambi, M. C. & Micheli, F. Community dynamics and ecosystem simplification in a high-CO2 ocean. Proc. Natl. Acad. Sci. USA 110, 12721–12726 (2013).

  • 43.

    Ricevuto, E., Vizzini, S. & Gambi, M. C. Ocean acidification effects on stable isotope signatures and trophic interactions of polychaete consumers and organic matter sources at a CO2 shallow vent system. J. Exp. Mar. Biol. Ecol. 468, 105–117 (2015).

  • 44.

    IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, Pachauri, R. K. and Meyer, L. A. (eds.) (Geneva, Switzerland, 2014).

  • 45.

    Foo, S. A., Byrne, M., Ricevuto, E. & Gambi, M. C. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: An overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. Annu. Rev. 56, 237–310 (2018).

    • Article
    • Google Scholar
  • 46.

    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99 (2008).

  • 47.

    Kroeker, K. J., Micheli, F., Gambi, M. C. & Martz, T. R. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proc. Natl. Acad. Sci. USA 108, 14515–14520 (2011).

  • 48.

    Layman, C. A., Arrington, D. A., Montana, C. G. & Post, D. M. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88, 42–48 (2007).

  • 49.

    Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER-Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).

  • 50.

    Jackson, M. C. et al. Population-level metrics of trophic structure based on stable isotopes and their application to invasion ecology. PLoS One 7, e31757 (2012).

  • 51.

    Stock, B. C. & Semmens, B. X. MixSIAR GUI User Manual. Version 3.1. https://github.com/brianstock/MixSIAR/. https://doi.org/10.5281/zenodo.47719 (2016).

  • 52.

    Vander Zanden, M. J. & Rasmussen, J. B. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol. Monogr. 66, 451–477 (1996).

    • Article
    • Google Scholar
  • 53.

    Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    • Article
    • Google Scholar
  • 54.

    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).

  • 55.

    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

  • 56.

    Bolser, R. C., Hay, M. E., Lindquist, N., Fenical, W. & Wilson, D. Chemical defenses of freshwater macrophytes against crayfish herbivory. J. Chem. Ecol. 24, 1639–1658 (1998).

  • 57.

    Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, New York, USA, 1985).

  • 58.

    Short, F. T. & Coles, R. G. Global Seagrass Research Methods (Elsevier Science B.V., Amsterdam, The Netherlands, 2001).

  • 59.

    Prado, P., Romero, J. & Alcoverro, T. Welcome mats? The role of seagrass meadow structure in controlling post-settlement survival in a keystone sea-urchin species. Estuar. Coast. Shelf Sci. 85, 472–478 (2009).

  • 60.

    Farina, S., Tomas, F., Prado, P., Romero, J. & Alcoverro, T. Seagrass meadow structure alters interactions between the sea urchin Paracentrotus lividus and its predators. Mar. Ecol. Prog. Ser. 377, 131–137 (2009).

  • 61.

    Pagès, J. F. et al. Indirect interactions in seagrasses: fish herbivores increase predation risk to sea urchins by modifying plant traits. Funct. Ecol. 26, 1015–1023 (2012).

    • Article
    • Google Scholar
  • 62.

    Boudouresque, C. F. & Meinesz, A. Découverte de l’herbier de Posidonies. Vol. 4 (Parc National de Port-Cros, Hyères, 1982).

  • 63.

    Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER (Primer-E, Plymouth, UK, 2008).


  • Source: Ecology - nature.com

    Staring into the vortex

    Marine virus predation by non-host organisms