in

Running performance with emphasis on low temperatures in a Patagonian lizard, Liolaemus lineomaculatus

  • 1.

    Robert Feldmeth, C., Stone, E. A. & Brown, J. H. An increased scope for thermal tolerance upon acclimating pupfish (Cyprinodon) to cycling temperatures. J. Comp. Physiol. 89, 39–44 (1974).

    Google Scholar 

  • 2.

    Hertz, P. E. Adaptation to altitude in two West Indian anoles. Animals 195, 25–37 (1981).

    Google Scholar 

  • 3.

    Hertz, P. E. & Huey, R. B. Compensation for altitudinal changes in the thermal environment by some anolis lizards on Hispaniola. Ecology 62, 515–521 (1981).

    Google Scholar 

  • 4.

    Hertz, P. E., Huey, R. B. & Nevo, E. Fight versus flight: body temperature influences defensive responses of lizards. Anim. Behav. 30, 676–679 (1982).

    Google Scholar 

  • 5.

    Stillman, J. H. Acclimation capacity underlies susceptibility to climate change. Science 301, 65 (2003).

    CAS  PubMed  Google Scholar 

  • 6.

    Chown, S. L., Gaston, K. J. & Robinson, D. Macrophysiology: large-scale patterns in physiological traits and their ecological implications. Funct. Ecol. 18, 159–167 (2004).

    Google Scholar 

  • 7.

    Chown, S. L. et al. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).

    Google Scholar 

  • 8.

    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    PubMed  Google Scholar 

  • 9.

    Bowler, K. & Terblanche, J. S. Insect thermal tolerance: what is the role of ontogeny, ageing and senescence?. Biol. Rev. 83, 339–355 (2008).

    PubMed  Google Scholar 

  • 10.

    Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

    PubMed  Google Scholar 

  • 11.

    Waldschmidt, S. & Tracy, C. R. Interactions between a lizard and its thermal environment: implications for sprint performance and space utilization in the lizard Uta stansburiana. Ecology 64, 476–484 (1983).

    Google Scholar 

  • 12.

    Huey, R. B. & Bennett, A. F. Phylogenetic studies of coadaptation: preferred temperatures versus optimal performance temperature of lizards. Evolution 41, 1098–1115 (1987).

    PubMed  Google Scholar 

  • 13.

    Huey, R. B. & Stevenson, R. D. Intergrating thermal physiology and ecology of ecotherms: a discussion of approaches. Am. Zool. 19, 357–366 (1979).

    Google Scholar 

  • 14.

    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).

    CAS  PubMed  Google Scholar 

  • 15.

    Huey, R. B. & Kingsolver, J. G. Evolution of resistance to high temperature in ectotherms. Am. Nat. 142, 21–46 (1993).

    Google Scholar 

  • 16.

    Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).

    Google Scholar 

  • 17.

    Angilletta, M. J. Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 18.

    Kingsolver, J. G. et al. Complex life cycles and the responses of insects to climate change. Integr. Comp. Biol. 51, 719–732 (2011).

    PubMed  Google Scholar 

  • 19.

    Logan, M. L., Cox, R. M. & Calsbeek, R. Natural selection on thermal performance in a novel thermal environment. Proc. Natl. Acad. Sci. 111, 14165–14169 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Sinclair, B. J. et al. Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures?. Ecol. Lett. 19, 1372–1385 (2016).

    PubMed  Google Scholar 

  • 21.

    Izem, R. & Kingsolver, J. G. Variation in continuous reaction norms: quantifying directions of biological interest. Am. Nat. 166, 277–289 (2005).

    PubMed  Google Scholar 

  • 22.

    Frazier, M. R., Huey, R. B. & Berrigan, D. Thermodynamics constrains the evolution of insect population growth rates: “warmer is better”. Am. Nat. 168, 512–520 (2006).

    CAS  PubMed  Google Scholar 

  • 23.

    Kingsolver, J. G. The well-temperatured biologist. Am. Nat. 174, 755–768 (2009).

    PubMed  Google Scholar 

  • 24.

    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 259, 253–258 (1990).

    Google Scholar 

  • 25.

    van Damme, R., Bauwens, D. & Verheyen, R. F. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57, 61 (1990).

    Google Scholar 

  • 26.

    Swoap, S. J., Johnson, T. P., Josephson, R. K. & Bennett, A. F. Temperature, muscle power output and limitations on burst locomotor performance of the lizard Dipsosaurus dorsalis. J. Exp. Biol. 174, 199–213 (1993).

    Google Scholar 

  • 27.

    Vicenzi, N., Corbalán, V., Miles, D., Sinervo, B. & Ibargüengoytía, N. Range increment or range detriment? Predicting potential changes in distribution caused by climate change for the endemic high-Andean lizard Phymaturus palluma. Biol. Conserv. 206, 151–160 (2017).

    Google Scholar 

  • 28.

    Vicenzi, N., Kubisch, E., Ibargüengoytía, N. & Corbalán, V. Thermal sensitivity of performance of Phymaturus palluma (Liolaemidae) in the highlands of Aconcagua : vulnerability to global warming in the Andes. Amphibia-Reptilia 01, 1–12 (2018).

    Google Scholar 

  • 29.

    Brattstrom, B. H. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93–111 (1968).

    CAS  PubMed  Google Scholar 

  • 30.

    Bauwens, D., Castilla, A. M., Van Damme, R. & Verheyen, R. F. Field body temperatures and thermoregulatory behavior of the high altitude lizard, Lacerta bedriagae. J. Herpetol. 24, 88–91 (1990).

    Google Scholar 

  • 31.

    Adolph, S. C. & Porter, W. P. Temperature, activity, and lizard life histories. Am. Nat. 142, 273–295 (1993).

    CAS  PubMed  Google Scholar 

  • 32.

    Díaz, J. A. & Cabezas-Díaz, S. Seasonal variation in the contribution of different behavioural mechanisms to lizard thermoregulation. Funct. Ecol. 18, 867–875 (2004).

    Google Scholar 

  • 33.

    Munoz, M. M. et al. Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc. R. Soc. B 281, 20132433–20132433 (2014).

    PubMed  Google Scholar 

  • 34.

    Cei, J. M. Reptiles del centro, centro-oeste y sur de la Argentina. Herpetofauna de las zonas áridas y semiáridas. Mitt. zool. Mus. vol. 64 (Torino: Museo Regionale di Scienze Naturali, 1988).

  • 35.

    Scolaro, J. A. Reptiles Patagónicos Sur: Una Guía de Campo (Universidad Nacional de la Patagonia, Comodoro Rivadavia, 2005).

    Google Scholar 

  • 36.

    Cecchetto, N. R., Medina, S. M., Taussig, S. & Ibargüengoytía, N. R. The lizard abides: cold hardiness and winter refuges of Liolaemus pictus argentinus in Patagonia, Argentina. Can. J. Zool. 782, 773–782 (2019).

    Google Scholar 

  • 37.

    Ibargüengoytía, N. R. et al. Thermal biology of the southernmost lizards in the world: Liolaemus sarmientoi and Liolaemus magellanicus from Patagonia, Argentina. J. Therm. Biol. 35, 21–27 (2010).

    Google Scholar 

  • 38.

    Fernández, J., Smith, J., Scolaro, A. & Ibargüengoytía, N. R. Performance and thermal sensitivity of the southernmost lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus. J. Therm. Biol. 36, 15–22 (2011).

    Google Scholar 

  • 39.

    Piantoni, C., Ibargüengoytía, N. R. & Cussac, V. E. Age and growth of the Patagonian lizard Phymaturus patagonicus. Amphibia-Reptilia 27, 385–392 (2006).

    Google Scholar 

  • 40.

    Boretto, J. M. & Ibargüengoytía, N. R. Phymaturus of Patagonia, Argentina: reproductive biology of Phymaturus zapalensis (Liolaemidae) and a comparison of sexual dimorphism within the genus. J. Herpetol. 43, 96–104 (2009).

    Google Scholar 

  • 41.

    Gutiérrez, J. A., Piantoni, C. & Ibargüengoytía, N. R. Altitudinal effects on life history parameters in populations of Liolaemus pictus argentinus (Sauria:Liolaemidae). Acta Herpetol. 8, 9–17 (2013).

    Google Scholar 

  • 42.

    Pianka, E. R. Comparative autecology of the lizard Cnemidophorus tigris in different parts of its georgraphic range. Ecology 51, 703–720 (1970).

    Google Scholar 

  • 43.

    James, C. & Shine, R. Life-history strategies of australian lizards: a comparison between the tropics and the temperate zone. Oecologia 75, 307–316 (1988).

    ADS  PubMed  Google Scholar 

  • 44.

    Piantoni, C., Navas, C. A. & Ibargüengoytía, N. R. A real tale of Godzilla: impact of climate warming on the growth of a lizard. Biol. J. Linn. Soc. 126, 768–782 (2019).

    Google Scholar 

  • 45.

    Gutiérrez, J. A., Krenz, J. D. & Ibargüengoytía, N. R. Effect of altitude on thermal responses of Liolaemus pictus argentinus in Argentina. J. Therm. Biol. 35, 332–337 (2010).

    Google Scholar 

  • 46.

    Medina, M. et al. Thermal biology of genus Liolaemus: a phylogenetic approach reveals advantages of the genus to survive climate change. J. Therm. Biol. 37, 579–586 (2012).

    Google Scholar 

  • 47.

    Huey, R. B. Physiological consequences of habitat selection. Am. Nat. 137, 91–115 (1991).

    Google Scholar 

  • 48.

    Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).

    PubMed  Google Scholar 

  • 49.

    Irschick, D. J. & Meyers, J. J. An analysis of the relative roles of plasticity and natural selection in the morphology and performance of a lizard (Urosaurus ornatus). Oecologia 153, 489–499 (2007).

    ADS  PubMed  Google Scholar 

  • 50.

    Strobbe, F., McPeek, M. A., De Block, M., De Meester, L. & Stoks, R. Survival selection on escape performance and its underlying phenotypic traits: a case of many-to-one mapping. J. Evol. Biol. 22, 1172–1182 (2009).

    CAS  PubMed  Google Scholar 

  • 51.

    Lima, S. L. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17, 70–75 (2002).

    Google Scholar 

  • 52.

    Herczeg, G. et al. Experimental support for the cost–benefit model of lizard thermoregulation: the effects of predation risk and food supply. Oecologia 155, 1–10 (2008).

    ADS  PubMed  Google Scholar 

  • 53.

    Lopez-Darias, M., Schoener, T. W., Spiller, D. A. & Losos, J. B. Predators determine how weather affects the spatial niche of lizard prey: exploring niche dynamics at a fine scale. Ecology 93, 2512–2518 (2012).

    PubMed  Google Scholar 

  • 54.

    Bakken, G. S. & Angilletta, M. J. How to avoid errors when quantifying thermal environments. Funct. Ecol. 28, 96–107 (2014).

    Google Scholar 

  • 55.

    Zagar, A., Carretero, M. A., Marguc, D., Simcic, T. & Vrezec, A. A metabolic syndrome in terrestrial ectotherms with different elevational and distribution patterns. Ecography 41, 1728–1739 (2018).

    Google Scholar 

  • 56.

    Bartheld, J. L., Artacho, P. & Bacigalupe, L. Thermal performance curves under daily thermal fluctuation: a study in helmeted water toad tadpoles. J. Therm. Biol. 70, 80–85 (2017).

    PubMed  Google Scholar 

  • 57.

    Kingsolver, J. G. & Huey, R. B. Introduction: the evolution of morphology, performance, and fitness. Integr. Comp. Biol. 43, 361–366 (2006).

    Google Scholar 

  • 58.

    Bonino, M. F. et al. Running in cold weather: Morphology, thermal biology, and performance in the southernmost lizard clade in the world (Liolaemus lineomaculatus section: Liolaemini: Iguania). J. Exp. Zool. A. 315, 495–503 (2011).

    Google Scholar 

  • 59.

    Kubisch, E. L., Fernández, J. & Ibargüengoytía, N. R. Is locomotor performance optimised at preferred body temperature? A study of Liolaemus pictus argentinus from northern Patagonia, Argentina. J. Therm. Biol. 36, 328–333 (2011).

    Google Scholar 

  • 60.

    Angilletta, M. J. Jr. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044–3056 (2001).

    Google Scholar 

  • 61.

    Buckley, L. B., Ehrenberger, J. C. & Angilletta, M. J. Jr. Thermoregulatory behaviour limits local adaptation of thermal niches and confers sensitivity to climate change. Funct. Ecol. 29, 1038–1047 (2015).

    Google Scholar 

  • 62.

    Taucare-Rios, A., Veloso, C. & Bustamante, R. O. Thermal niche conservatism in an environmental gradient in the spider Sicarius thomisoides (Araneae: Sicariidae): implications for microhabitat selection. J. Therm. Biol. 78, 298–303 (2018).

    CAS  PubMed  Google Scholar 

  • 63.

    Medina, M., Scolaro, J. A., Méndez-de la Cruz, F., Sinervo, B. & Ibargüengoytía, N. R. Thermal relationships between body temperature and environment conditions set upper distributional limits on oviparous species. J. Therm. Biol. 36, 527–534 (2011).

    Google Scholar 

  • 64.

    Ibargüengoytía, N. R., Renner, M. L. & Boretto, J. M. Thermal effects on locomotion in the nocturnal gecko Homonota darwini (Gekkonidae). Amphibia-Reptilia 28, 235–246 (2007).

    Google Scholar 

  • 65.

    Medina, S. M. & Ibargüengoytía, N. R. How do viviparous and oviparous lizards reproduce in Patagonia? A comparative study of three species of Liolaemus. J. Arid Environ. 74, 1024–1032 (2010).

    ADS  Google Scholar 

  • 66.

    Boretto, J. M., Cabezas-Cartes, F. & Ibargüengoytía, N. R. Slow life histories in lizards living in the highlands of the Andes Mountains. J. Comp. Physiol. B 188, 491–503 (2018).

    PubMed  Google Scholar 

  • 67.

    Nussey, D. H., Wilson, A. J. & Brommer, J. E. The evolutionary ecology of individual phenotypic plasticity in wild populations. J. Evol. Biol. 20, 831–844 (2007).

    CAS  PubMed  Google Scholar 

  • 68.

    Artacho, P., Jouanneau, I. & Le Galliard, J.-F. Interindividual variation in thermal sensitivity of maximal sprint speed, thermal behavior, and resting metabolic rate in a lizard. Physiol. Biochem. Zool. 86, 458–469 (2013).

    PubMed  Google Scholar 

  • 69.

    Bonino, M. F., Moreno Azócar, D. L., Schulte, J. A. & Cruz, F. B. Climate change and lizards: changing species’ geographic ranges in Patagonia. Reg. Environ. Chang. 15, 1121–1132 (2015).

    Google Scholar 

  • 70.

    Gvozdík, L. & Castilla, A. M. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35, 486–492 (2001).

    Google Scholar 

  • 71.

    Angilletta, M. J. Estimating and comparing thermal performance curves. J. Therm. Biol. 31, 541–545 (2006).

    Google Scholar 

  • 72.

    Hertz, P. E., Huey, R. B. & Nevo, E. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075–1084 (1983).

    PubMed  Google Scholar 

  • 73.

    Zamora-Camacho, F. J., Rubiño-Hispán, M. V., Reguera, S. & Moreno-Rueda, G. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures. J. Therm. Biol. 52, 90–96 (2015).

    PubMed  Google Scholar 

  • 74.

    Huey, R. B. & Slatkin, M. Cost and benefits of lizard thermoregulation. Q. Rev. Biol. 51, 363–384 (1976).

    CAS  PubMed  Google Scholar 

  • 75.

    Logan, M. L., Fernandez, S. G. & Calsbeek, R. Abiotic constraints on the activity of tropical lizards. Funct. Ecol. 29, 694–700 (2015).

    Google Scholar 

  • 76.

    Sears, M. W. & Angilletta, M. J. Costs and benefits of thermoregulation revisited: both the heterogeneity and spatial structure of temperature drive energetic costs. Am. Nat. 185, E94–E102 (2015).

    PubMed  Google Scholar 

  • 77.

    Basson, C. H., Levy, O., Angilletta, M. J. & Clusella-Trullas, S. Lizards paid a greater opportunity cost to thermoregulate in a less heterogeneous environment. Funct. Ecol. 31, 856–865 (2017).

    Google Scholar 

  • 78.

    Stankowich, T. & Blumstein, D. T. Fear in animals: a meta-analysis and review of risk assessment. Proc. R. Soc. B 272, 2627–2634 (2005).

    PubMed  Google Scholar 

  • 79.

    Stephens, D. W. & Charnov, E. L. Optimal foraging: some simple stochastic models. Behav. Ecol. Sociobiol. 10, 251–263 (1982).

    Google Scholar 

  • 80.

    Kacelnik, A. & Bateson, M. Risky theories: the effects of variance on foraging decisions. Am. Zool. 36, 402–434 (1996).

    Google Scholar 

  • 81.

    Lister, B. C. & Aguayo, A. G. Seasonality, predation, and the behaviour of a tropical mainland anole. J. Anim. Ecol. 61, 717–733 (1992).

    Google Scholar 

  • 82.

    Broeckhoven, C. & Nortier, F. Some like it hot: camera traps unravel the effects of weather conditions and predator presence on the activity levels of two lizards. PLoS ONE 10, 1–15 (2015).

    Google Scholar 

  • 83.

    Angilletta, M. J., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol. 27, 249–268 (2002).

    Google Scholar 

  • 84.

    Ibargüengoytía, N. R. et al. Volcanic ash from Puyehue-Cordon Caulle eruptions affects running performance and body condition of Phymaturus lizards in Patagonia, Argentina. Biol. J. Linn. Soc. 118, 842–851 (2016).

    Google Scholar 

  • 85.

    Geng, J., Dong, W., Wu, Q. & Lu, H.-L. Thermal tolerance for two cohorts of a native and an invasive freshwater turtle species. Acta Herpetol. 13, 83–88 (2018).

    Google Scholar 

  • 86.

    Thompson, M. E., Halstead, B. J. & Donnelly, M. A. Thermal quality influences habitat use of two Anolis species. J. Therm. Biol. 18, 54–61 (2018).

    Google Scholar 

  • 87.

    Bakken, G. S. Measurement and application of operative and standard operative temperatures in ecology. Am. Zool. 32, 194–216 (1992)

  • 88.

    Medina, S. M. Adaptaciones morfológicas y fisiológicas ligadas a la transición oviparidad-viviparidad en lagartos de climas fríos: reproducción y fisiología térmica. (PhD thesis, Universidad Nacional del Comahue, 2010).

  • 89.

    Lindsey, A. A. & Newman, J. E. Use of official wather data in spring time: temperature analysis of an Indiana phenological record. Ecology 37, 812–823 (1956).

    Google Scholar 

  • 90.

    Guisan, A. & Hofer, U. Predicting reptile distributions at the mesoscale: relation to climate and topography. J. Biogeogr. 30, 1233–1243 (2003).

    Google Scholar 

  • 91.

    Schwanz, L. E. & Janzen, F. J. Climate change and temperature-dependent sex determination: can individual plasticity in nesting phenology prevent extreme sex ratios?. Physiol. Biochem. Zool. 81, 826–834 (2008).

    PubMed  Google Scholar 

  • 92.

    Murphy, M. A., Evans, J. S. & Storfer, A. Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91, 252–261 (2010).

    PubMed  Google Scholar 

  • 93.

    Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).

    PubMed  Google Scholar 

  • 94.

    Graae, B. J. et al. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121, 3–19 (2012).

    Google Scholar 

  • 95.

    Mitchell, N. et al. Linking eco-energetics and eco-hydrology to select sites for the assisted colonization of Australia’s rarest reptile. Biology 2, 1–25 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 96.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891 (2009).

    Google Scholar 

  • 97.

    Legendre, P. lmodel2: Model II Regression. (2014).

  • 98.

    R Core Team. R: A Language and Environment for Statistical Computing. (R Core Team, Vienna, 2019).

  • 99.

    Wood, S. & Wood, M. S. Package ‘mgcv’. R Packag. version 1–7 (2015).

  • 100.

    Hastie, T. & Tibshirani, R. Generalized additive models: some applications. J. Am. Stat. Assoc. 82, 371–386 (1987).

    MATH  Google Scholar 


  • Source: Ecology - nature.com

    Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus)

    Global correlates of terrestrial and marine coverage by protected areas on islands