in

Scale-free vertical tracking microscopy

  • 1.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 3.

    Menden-Deuer, S. & Kiørboe, T. HORIZONS small bugs with a big impact: linking plankton ecology with ecosystem processes. J. Plankton Res. 38, 1036–1043 (2016).

    CAS  Google Scholar 

  • 4.

    Azam, F. Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694–696 (1998).

    CAS  Google Scholar 

  • 5.

    McManus, M. A. & Woodson, C. B. Plankton distribution and ocean dispersal. J. Exp. Biol. 215, 1008–1016 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 6.

    Schuech, R. & Menden-Deuer, S. Going ballistic in the plankton: anisotropic swimming behavior of marine protists. Limnol. Oceanogr. Fluids Environ. 4, 1–16 (2014).

    Google Scholar 

  • 7.

    von Wangenheim, D. et al. Live tracking of moving samples in confocal microscopy for vertically grown roots. eLife 6, e26792 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 8.

    Berg, H. C. How to track bacteria. Rev. Sci. Instrum. 42, 868–871 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 9.

    Kim, D. H. et al. Pan-neuronal calcium imaging with cellular resolution in freely swimming zebrafish. Nat. Methods 14, 1107–1114 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Darnige, T. et al. Lagrangian 3D tracking of fluorescent microscopic objects in motion. Rev. Sci. Instrum. 88, 055106 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 11.

    Drescher, K., Goldstein, R. E., Michel, N., Polin, M. & Tuval, I. Direct measurement of the flow field around swimming microorganisms. Phys. Rev. Lett. 105, 1–4 (2010).

    Google Scholar 

  • 12.

    Cong, L. et al. Rapid whole-brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio). eLife 6, 1–20 (2017).

    Google Scholar 

  • 13.

    Ploug, H. & Jørgensen, B. B. A net-jet flow system for mass transfer and micro electrode studies in sinking aggregates. Mar. Ecol. Prog. Ser. 176, 279 (1999).

    CAS  Google Scholar 

  • 14.

    Drescher, K., Leptos, K. C. & Goldstein, R. E. How to track protists in three dimensions. Rev. Sci. Instrum. 80, 1–7 (2009).

    Google Scholar 

  • 15.

    Verasztó, C. et al. Ciliary and rhabdomeric photoreceptor-cell circuits form a spectral depth gauge in marine zooplankton. eLife 7, 1–19 (2018).

    Google Scholar 

  • 16.

    Sauma-Pérez, T., Johnson, C. G., Yang, L. & Mullin, T. An experimental study of the motion of a light sphere in a rotating viscous fluid. J. Fluid Mech. 847, 119–133 (2018).

    Google Scholar 

  • 17.

    Van Nierop, E. A. et al. Drag and lift forces on bubbles in a rotating flow. J. Fluid Mech. 571, 439–454 (2007).

    Google Scholar 

  • 18.

    Mukundakrishnan, K., Hu, H. H. & Ayyaswamy, P. S. The dynamics of two spherical particles in a confined rotating flow: Pedalling motion. J. Fluid Mech. 599, 169–204 (2008).

    Google Scholar 

  • 19.

    Wolf, A. & Schwarz, R. P. Culture Vessel. NASA technical paper 3143 (1999).

  • 20.

    Schwarz, R. P., Goodwin, T. J. & Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14, 51–57 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 21.

    Salzen, E. A. The density of sea urchin eggs, embryos and larvae. Exp. Cell Res. 12, 615–625 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 22.

    Leal, L. G. Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, Vol. 7 (Cambridge University Press, 2007).

  • 23.

    Marcos, F. H. C., Powers, T. R. & Stocker, R. Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109, 4780–4785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Rusconi, R., Guasto, J. S. & Stocker, R. Bacterial transport suppressed by fluid shear. Nat. Phys. 10, 212–217 (2014).

    CAS  Google Scholar 

  • 25.

    Mathijssen, A. J. T. M. et al. Oscillatory surface rheotaxis of swimming E. coli bacteria. Nat. Commun. 10, 7–9 (2019).

    Google Scholar 

  • 26.

    Strathmann, R. R. Larval feeding in echinoderms. Integr. Comp. Biol. 15, 717–730 (1975).

    Google Scholar 

  • 27.

    Strathmann, R. R. & Grünbaum, D. Good eaters, poor swimmers: compromises in larval form. Integr. Comp. Biol. 46, 312–322 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Emlet, R. B. Flow fields around ciliated larvae: effects of natural and artificial tethers. Mar. Ecol. Prog. Ser. 63, 211–225 (1990).

    Google Scholar 

  • 29.

    Gonzalez, P., Jiang, J. Z. & Lowe, C. J. The development and metamorphosis of the indirect developing acorn worm Schizocardium californicum (Enteropneusta: Spengelidae). Front. Zool. 15, 1–24 (2018).

    Google Scholar 

  • 30.

    Keeling, P. J. & del Campo, J. Marine protists are not just big bacteria. Curr. Biol. 27, R541–R549 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Cheriton, O. M., McManus, M. A., Stacey, M. T. & Steinbuck, J. V. Physical and biological controls on the maintenance and dissipation of a thin phytoplankton layer. Mar. Ecol. Prog. Ser. 378, 55–69 (2009).

    Google Scholar 

  • 32.

    Zimorski, V., Rauch, C., Van, J. J., Tielens, A. G. M. & Martin, W. F. (eds.) Euglena: Biochemistry, Cell and Molecular Biology. 979 (2017).

  • 33.

    Kim, I.-H., Prusti, R. K., Song, P.-S., Häder, D.-P. & Häder, M. Phototaxis and photophobic responses in Stentor coeruleus action spectrum and role of Ca2+ fluxes. Biochim. Biophys. Acta 799, 298–304 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Mackie, G. O., Spencer, A. N. & Strathmann, R. Electrical activity associated with ciliary reversal in an echinoderm larva. Nature 223, 1384 (1969).

    Google Scholar 

  • 35.

    Gemmell, B. J., Jiang, H. & Buskey, E. J. A new approach to micro-scale particle image velocimetry (μPIV) for quantifying flows around free-swimming zooplankton. J. Plankton Res. 36, 1396–1401 (2014).

    Google Scholar 

  • 36.

    Nielsen, L. T. & Kiørboe, T. Feeding currents facilitate a mixotrophic way of life. ISME J. 9, 2117–2127 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Conzelmann, M. et al. Neuropeptides regulate swimming depth of Platynereis larvae. Proc. Natl Acad. Sci. USA 108, E1174–E1183 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 38.

    Fenchel, T. & Ockelmann, K. W. Larva on a string. Ophelia 56, 171–178 (2002).

    Google Scholar 

  • 39.

    Gilpin, W., Prakash, V. N. & Prakash, M. Vortex arrays and ciliary tangles underlie the feeding-swimming trade-off in starfish larvae. Nat. Phys. 13, 380–386 (2017).

    CAS  Google Scholar 

  • 40.

    Pernet, B. in Evolutionary Ecology of Marine Invertebrate Larvae, Vol. 1 (Oxford University Press, 2018).

  • 41.

    Jékely, G. et al. Mechanism of phototaxis in marine zooplankton. Nature 456, 395–399 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Tosches, M. A., Bucher, D., Vopalensky, P. & Arendt, D. Melatonin signaling controls circadian swimming behavior in marine zooplankton. Cell 159, 46–57 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 43.

    Drescher, K., Goldstein, R. E. & Tuval, I. Fidelity of adaptive phototaxis. Proc. Natl Acad. Sci. USA 107, 11171–11176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 44.

    Costa, M., Goldberger, A. L. & Peng, C. K. Multiscale entropy analysis of biological signals. Phys. Rev. E 71, 1–18 (2005).

    Google Scholar 

  • 45.

    Nguyen, J. P. et al. Whole-brain calcium imaging with cellular resolution in freely behaving C. elegans. Proc. Natl Acad. Sci. USA 113, E1074-81 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 46.

    Hardy, A. C. & Bainbridge, R. Experimental observations on the vertical migrations of plankton animals. J. Mar. Biol. Assoc. UK 33, 409–448 (1954).

    Google Scholar 

  • 47.

    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Annu. Rev. Mar. Sci. 1, 443–466 (2008).

    Google Scholar 

  • 48.

    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity of marine populations: open or closed? Science 287, 857–859 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    DeLong, E. F. The microbial ocean from genomes to biomes. Nature 459, 200–206 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 51.

    Lukežič, A. et al. Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Computer Vis. 126, 671–688 (2018).

    Google Scholar 

  • 52.

    Zhu, Z. et al. Distractor-aware siamese networks for visual object tracking. Lect. Notes Comput. Sci. 11213, 103–119 (2018).

    Google Scholar 

  • 53.

    Batten, C. F., Holburn, D. M., Breton, B. C. & Caldwell, N. H. M. Sharpness search algorithms for automatic focusing in the scanning electron microscope. Scanning 23, 112–113 (2001).

    Google Scholar 

  • 54.

    Batten, C. F. Autofocusing and Astigmatism Correction in the Scanning Electron Microscope. MPhil thesis, University of Cambridge (2000).

  • 55.

    Strathmann, M. F. Reproduction and Development of Marine Invertebrates of the Northern Pacific Coast: Data and Methods for the Study of Eggs, Embryos and Larvae (University of Washington Press, 2017).


  • Source: Ecology - nature.com

    Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens

    Biodiversity scientists must fight the creeping rise of extinction denial