in

Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest

  • 1.

    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plicht, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).

    ADS  CAS  Google Scholar 

  • 2.

    Stoy, P. C. et al. Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiol. 25, 887–902 (2005).

    PubMed  Google Scholar 

  • 3.

    Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009).

    ADS  Google Scholar 

  • 4.

    Marcolla, B., Rödenbeck, C. & Cescatti, A. Patterns and controls of inter-annual variability in the terrestrial carbon budget. Biogeosci. 14, 3815–3829 (2017).

    ADS  CAS  Google Scholar 

  • 5.

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    ADS  PubMed  Google Scholar 

  • 6.

    Jacobs, C. M. J, and den Hurk, V. B. M. M. & De Bruin, H. A. R. Stomatal behaviour and photosynthetic rate of unstressed grapevines in semi-arid conditions. Agric. For. Meteorol. 80, 111–134 (1996).

  • 7.

    Stocker, T. F. et al. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

  • 8.

    Araújo, A. C. et al. The spatial variability of CO2 storage and the interpretation of eddy covariances fluxes in central Amazonia. Agric. For. Meteorol. 150, 226–237 (2010).

    ADS  Google Scholar 

  • 9.

    Jia, X. et al. Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperature semiarid schrubland. Agric. For. Meteorol. 259, 250–259 (2018).

    ADS  Google Scholar 

  • 10.

    Jia, X. et al. Biophysical controls on net ecosystem CO2 e3xchange over a semiarid shubland in northwest China. Biogeosci. 11, 4679–4693 (2014).

    ADS  CAS  Google Scholar 

  • 11.

    Asner, G. P., Archer, S., Huges, F., Ansley, R. J. & Wessman, C. A. Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1973–1999. Glob. Change Biol. 9, 316–335 (2003).

    ADS  Google Scholar 

  • 12.

    Rotenberg, E. & Yakir, D. Contribution of semi-arid forests to the climate system. Science 327, 451–454 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 13.

    Lapola, D. M. Bytes and boots to understand the future of the Amazon forest. New Phytol. 219, 845–847 (2018).

    PubMed  Google Scholar 

  • 14.

    Lapola, D. M. et al. Pervasive transition of the Brazilian land-use system. Nat. Climate Change 4, 27–35 (2013).

    ADS  Google Scholar 

  • 15.

    Lapola, D. M., Oyama, M. D., Nobre, C. A. & Sampaio, G. A new world natural vegetation map for global changes studies. Ann. Braz. Acad. Sci. 80, 397–408 (2008).

    Google Scholar 

  • 16.

    Hirota, M., Nobre, C., Oyama, M. D. & Bustamante, M. M. The climatic sensitivity of the forest, savanna and forest–savanna transition in tropical South America. New Phytol. 187, 707–719 (2010).

    PubMed  Google Scholar 

  • 17.

    Salazar, A., Baldi, G., Hirota, M., Syktus, J. & Mcalpine, C. Land use and land cover change impacts on the regional climate of non-Amazonian South America: A review. Glob. Planet. Change 128, 103–119 (2015).

    ADS  Google Scholar 

  • 18.

    Werneck, F. P., Nogueira, C., Colli, G. R., Sites, J. W. & Costa, G. C. Climatic stability in the Brazilian Cerrado: implications for biogeographical connections of South American savannas, species richness and conservation in a biodiversity hotspot. J. Biogeogr. 39, 1695–1706 (2012).

    Google Scholar 

  • 19.

    Poulter, B. et al. Contribuition of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–604 (2014).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl. Acad. Sci. 112, 15591–15596 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Campos, S. et al. Closure and partitioning of the energy balance in a preserved area of a Brazilian seasonally dry tropical forest. Agric. For. Meteorol. 471, 398–412 (2019).

    ADS  Google Scholar 

  • 22.

    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141, 211–220 (2004).

    ADS  PubMed  Google Scholar 

  • 23.

    Hulshof et al. Plant Functional Trait Variation in Tropical Dry Forests: A Review and Synthesis in Tropical Dry Forests in the Americas (ed. Sánchez-Azofeifa, A. et al.) 129–140 (2014).

  • 24.

    Gei, M. G. & Powers, J. S. Nutrient Cycling in Tropical Dry Forests in Tropical Dry Forests in the Americas (ed. Sánchez-Azofeifa, A. et al.) 141–154 (2011).

  • 25.

    Cleverly, J. et al. Productivity and evapotranspiration of two contrasting semiarid ecosystems following the 2011 global carbon land sink anomaly. Agric. For. Meteorol. 220, 151–159 (2016).

    ADS  Google Scholar 

  • 26.

    Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 37747 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 28.

    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl Acad. Sci. 100, 10309–10313 (2003).

    ADS  CAS  PubMed  Google Scholar 

  • 29.

    Ribeiro, K. et al. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Sci. Total Environ. 541, 1048–1057 (2016).

    ADS  Google Scholar 

  • 30.

    PBMC. In: Ambrizzi, T., Ahmad, M. (Eds.), Scientific Basis of Climate Change. Contribution of Working Group 1 of the Brazilian Climate Change Panel to the First National Assessment Report on Climate Change. COPPE, Federal University of Rio de Janeiro (Rio de Janeiro, 2014).

  • 31.

    da Silva, P. E. Santos e Silva, C. M., Spyrides, M. H. C. & Andrade, L. M. B. Precipitation and air temperature extremes in the Amazon and northeast Brazil. Int. J. Climatol. 39, 579–595 (2018).

    Google Scholar 

  • 32.

    Bezerra, B. G., Silva, L. L., Santos e Silva, C. M. & Carvalho, G. G. Changes of precipitation extremes indices in São Francisco River Basin, Brazil from 1947 to 2012. Theor. Appl. Climatol. 135, 565–576 (2019).

  • 33.

    Huang, J. et al. Global semi-arid climate change over last 60 years. Clim. Dyn. 46, 1131–1150 (2016).

    Google Scholar 

  • 34.

    Dubreuil, V., Fante, K. P., Planchon, O. & Sant’Anna, J. L. Climate change evidence in Brazil from Köppen’s climate annual types frequency. Int. J. Climatol. 39, 1446–1456 (2019).

    Google Scholar 

  • 35.

    Marengo, J. A., Torres, R. R. & Alves, L. M. Drought in Northeast-Brazil – past, present, and future. Theor. Appl. Climatol. 129, 1189–1200 (2017).

    ADS  Google Scholar 

  • 36.

    Santos, M. G. et al. The Brazilian Caatinga, dry tropical forest: can it tolerate climate changes. Theor. Exp. Plant. Physiol. 26, 83–99 (2014).

    Google Scholar 

  • 37.

    Mendes, K. R. et al. Croton blanchetianus modulates its morphophysiological responses to tolerate drought in a tropical dry forest. Funct. Plant Biol. 44, 1039–1051 (2017).

    PubMed  Google Scholar 

  • 38.

    Pinho-Pessoa, A. C. B. et al. Interannual variation in temperature and rainfall can modulate the physiological and photoprotective mechanisms of a native semiarid plant species. Indian J. Sci. Technol. 11, 1–17 (2018).

    CAS  Google Scholar 

  • 39.

    Mekonnen, Z. A., Grant, R. F. & Schwalm, C. Contrasting changes in gross primary productivity of different regions of North America as affected by warming in recent decades. Agric. For. Meteorol. 218, 50–64 (2016).

    ADS  Google Scholar 

  • 40.

    Campo, J. & Merino, A. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Glob. Change Biol. 22, 1942–1956 (2016).

    ADS  Google Scholar 

  • 41.

    Tagesson, T. et al. Dynamics in carbon exchange fluxes for a grazed semi-arid savanna ecosystem in West Africa. Agric. Ecosyst. Environ. 205, 15–24 (2015).

    CAS  Google Scholar 

  • 42.

    Luyssaert, S. et al. CO2 balance of boreal, temperate, and tropical forest derived from a global database. Glob. Change Biol. 13, 2509–2537 (2007).

    ADS  Google Scholar 

  • 43.

    Fernández-Martinez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Climate Change. 4, 471–476 (2014).

    ADS  Google Scholar 

  • 44.

    Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Menezes, R. S. C., Sampaio, E. V. S. B., Giongo, V. & Pérez-Marin, A. M. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome. Braz. J. Biol. 72, 643–653 (2012).

    CAS  PubMed  Google Scholar 

  • 46.

    Hanan, N. P., Kabat, P., Dolman, A. J. & Elbers, J. A. Photosynthesis and carbon balance of a Sahelian fallow savanna. Glob. Change Biol. 4, 523–538 (1998).

    ADS  Google Scholar 

  • 47.

    Ma, S., Baldocchi, D. D., Xu, L. & Hehn, T. Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteorol. 147, 157–171 (2007).

    ADS  Google Scholar 

  • 48.

    Eamus, D. et al. Carbon and water fluxes in an arid-zone Acacia savanna woodland: an analysis of seasonal patterns and responses to rainfall events. Agric. For. Meteorol. 182-183, 225–238 (2013).

    ADS  Google Scholar 

  • 49.

    Santos, A. J. B., Silva, G. T. D. A., Miranda, H. S., Miranda, A. C. & Lloyd, J. Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil. Funct. Ecol. 17, 711–719 (2003).

    Google Scholar 

  • 50.

    Zanella De Arruda, P. H. et al. Large net CO2 loss from a grass-dominated tropical savanna in south-central Brazil in response to seasonal and interannual drought. J. Geophys. Res. Biogeosci. 121, 2110–2124 (2016).

  • 51.

    Quansah, E. et al. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa. Carbon Balance Manage. 10, 1 (2015).

    CAS  Google Scholar 

  • 52.

    Fu, Z. et al. The surface-atmosphere exchange of carbon dioxide in tropical rainforests: Sensitivity to environmental drivers and flux measurement methodology. Agric. For. Meteorol. 263, 292–307 (2018).

    ADS  Google Scholar 

  • 53.

    Yao, Y. et al. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 253-254, 84–93 (2018).

    ADS  Google Scholar 

  • 54.

    Jung, M. et al. Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

    Google Scholar 

  • 55.

    Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Change Biol. 15, 1255–1274 (2009).

    ADS  Google Scholar 

  • 56.

    Baldocchi, D. & Penuelas, J. The physics and ecology of mining carbon dioxide from the atmosphere by ecosystems. Glob. Change Biol. 25, 1191–1197 (2019).

    ADS  Google Scholar 

  • 57.

    Hadden, D. & Grelle, A. Changing temperature response of respiration turns boreal forest from carbon sink into carbon source. Agric. For. Meteorol. 223, 30–38 (2016).

    ADS  Google Scholar 

  • 58.

    Kondo, M., Saitoh, T. M., Sato, H. & Ichii, K. Comprehensive synthesis of spatial variability in carbon flux acrossmonsoon Asian forests. Agric. For. Meteorol. 232, 623–634 (2017).

    ADS  Google Scholar 

  • 59.

    Heusinkveld, B. G., Jacobs, A. F. G. & Holtslag, A. A. M. Effect of open-path gas analyzer wetness on eddy covariance flux measuments: A proposed soluction. Agric. For. Meteorol. 148, 1563–1573 (2008).

    ADS  Google Scholar 

  • 60.

    Lasslop., G. Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation. Glob. Chang. Biol. 16, 187–208 (2010).

    ADS  Google Scholar 

  • 61.

    Lloyd, J. & Farquhar, G. D. Effects of rising temperatures and [CO2] on the physiology of tropical forest trees. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 1811–1817 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Flexas, J. et al. Research stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci. 226, 41–48 (2014).

    CAS  PubMed  Google Scholar 

  • 63.

    Sharma, S. et al. Carbon and evapotranspiration dynamics of a non-native perennial grass with biofuel potential in the southern U.S. Great Plains. Agric. Forest Meteorol. 269–270, 285–293 (2019).

    ADS  Google Scholar 

  • 64.

    Ribeiro, K. et al. Land cover changes and greenhouse gas emissions in two different soil covers in the Brazilian Caatinga. Sci. Total Environ. 541, 1048–1057 (2016).

    ADS  Google Scholar 

  • 65.

    Santana, J. A. S., Santana Júnior, J. A. S., Barreto, W. S. & Ferreira, A. T. S. Estrutura e distribuição espacial da vegetação da Caatinga na Estação Ecológica do Seridó, RN. Braz. J. For. Res. 36, 355–361 (In Portuguese with English Abstract). (2016).

  • 66.

    Althoff, T. D. et al. Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agric. Ecosyst. Environ. 254, 26–34 (2018).

    CAS  Google Scholar 

  • 67.

    Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. M. & Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 22, 711–728 (2014).

    Google Scholar 

  • 68.

    Mutti, P. R. et al. Basin scale rainfall-evapotranspiration dynamics in a tropical semiarid environment during dry and wet years. Int. J. Appl. Earth Obs. Geoinformation. 75, 29–43 (2019).

    ADS  Google Scholar 

  • 69.

    Baldocchi, D. D., Hicks, B. B. & Meyers, T. P. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecol. 69, 1331–1340 (1988).

    Google Scholar 

  • 70.

    Aubinet, M. et al. Long term carbon dioxide Exchange above a mixed forest in the Belgian Ardennes. Agric. For. Meteorol. 108, 293–315 (2001).

    ADS  Google Scholar 

  • 71.

    Silva, P. F. et al. Seasonal patterns of carbon dioxide, water and energy fluxes over the Caatinga and grassland in the semi-arid region of Brazil. J. Arid Environ. 147, 71–82 (2017).

    ADS  Google Scholar 

  • 72.

    Jensen, R., Herbst, M. & Fribog, T. Direct and indirect controls of the interanual variability in atmospheric CO2 exchange of three contrasting ecosystems in Denmark. Agric. For. Meteorol. 233, 12–31 (2017).

    ADS  Google Scholar 

  • 73.

    Papale, D. et al. Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosci. 3, 571–583 (2006).

    ADS  CAS  Google Scholar 

  • 74.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    ADS  Google Scholar 

  • 75.

    Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

    Google Scholar 

  • 76.

    Keenan, T. F. et al. Widespread inhibition of daytime ecosystem respiration. Nat. Ecol. Evol. 3, 407–415 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 77.

    Kljun, N., Calanca, P., Rotach, M. W. & Schmid, H. P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 8, 3695–3713 (2015).

    ADS  Google Scholar 

  • 78.

    Kim, J., Hwang, T., Schaaf, C. L., Kljun, N. & Munger, J. W. Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agric. For. Meterol. 253–254, 71–83 (2018).

    Google Scholar 

  • 79.

    R Core Team. R: a language and environment for statistical computing in R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org (2018).


  • Source: Ecology - nature.com

    Competitive ability and plasticity of Wedelia trilobata (L.) under wetland hydrological variations

    A layered approach to safety