in

Seasonality of archaeal proteorhodopsin and associated Marine Group IIb ecotypes (Ca. Poseidoniales) in the North Western Mediterranean Sea

  • 1.

    Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992;356:148–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 3.

    Santoro AE, Richter RA, Dupont CL. Planktonic marine archaea. Annu Rev Mar Sci. 2019;11:131–58.

    Article  Google Scholar 

  • 4.

    Martin-Cuadrado A-B, Garcia-Heredia I, Molto AG, Lopez-Ubeda R, Kimes N, López-García P, et al. A new class of marine Euryarchaeota group II from the mediterranean deep chlorophyll maximum. ISME J. 2015;9:1619–34.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Martin-Cuadrado AB, Rodriguez-Valera F, Moreira D, Alba JC, Ivars-Martinez E, Henn MR, et al. Hindsight in the relative abundance, metabolic potential and genome dynamics of uncultivated marine archaea from comparative metagenomic analyses of bathypelagic plankton of different oceanic regions. ISME J. 2008;2:865–86.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.). ISME J. 2019;13:663–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Tully BJ. Metabolic diversity within the globally abundant Marine Group II Euryarchaea offers insight into ecological patterns. Nat Commun. 2019;10:1–12.

    CAS  Article  Google Scholar 

  • 8.

    Li M, Baker BJ, Anantharaman K, Jain S, Breier JA, Dick GJ. Genomic and transcriptomic evidence for scavenging of diverse organic compounds by widespread deep-sea archaea. Nat Commun. 2015;6:8933.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Orsi WD, Smith JM, Wilcox HM, Swalwell JE, Carini P, Worden AZ, et al. Ecophysiology of uncultivated marine euryarchaea is linked to particulate organic matter. ISME J. 2015;9:1747–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 10.

    Pereira O, Hochart C, Auguet JC, Debroas D, Galand PE. Genomic ecology of Marine Group II, the most common marine planktonic Archaea across the surface ocean. MicrobiologyOpen. 2019;8:e00852.

    PubMed  PubMed Central  Google Scholar 

  • 11.

    Frigaard NU, Martinez A, Mincer TJ, DeLong EF. Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature. 2006;439:847–50.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine euryarchaeota. Science. 2012;335:587–90.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Orsi WD, Smith JM, Liu S, Liu Z, Sakamoto CM, Wilken S, et al. Diverse, uncultivated bacteria and archaea underlying the cycling of dissolved protein in the ocean. ISME J. 2016;10:2158–73.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Zhang CL, Xie W, Martin-Cuadrado A-B, Rodriguez-Valera F. Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol. 2015;6:1108.

    PubMed  PubMed Central  Google Scholar 

  • 15.

    Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P. Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol. 2014;6:1549–63.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C. Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J. 2009;3:860–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Massana R, DeLong EF, Pedros-Alio C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol. 2000;66:1777–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Parada AE, Fuhrman JA. Marine archaeal dynamics and interactions with the microbial community over 5 years from surface to seafloor. ISME J. 2017;11:2510–25.

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, et al. Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci USA. 2013;110:6004–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Galand PE, Gutiérrez-Provecho C, Massana R, Gasol JM, Casamayor EO. Inter-annual recurrence of archaeal assemblages in the coastal NW Mediterranean Sea (Blanes Bay Microbial Observatory). Limnol Oceanogr. 2010;55:2171–2125.

    Article  Google Scholar 

  • 21.

    Orellana LH, Francis TB, Krüger K, Teeling H, Müller M-C, Fuchs BM, et al. Niche differentiation among annually recurrent coastal Marine Group II Euryarchaeota. ISME J. 2019;13:3024–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Xie W, Luo H, Murugapiran SK, Dodsworth JA, Chen S, Sun Y, et al. Localized high abundance of Marine Group II archaea in the subtropical Pearl River Estuary: implications for their niche adaptation. Environ Microbiol. 2018;20:734–54.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Galand PE, Pereira O, Hochart C, Auguet JC, Debroas D. A strong link between marine microbial community composition and function challenges the idea of functional redundancy. ISME J. 2018;12:2470.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Peng Y, Leung HC, Yiu S-M, Chin FY. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Noguchi H, Taniguchi T, Itoh T. MetaGeneAnnotator: detecting species-specific patterns of ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes. DNA Res. 2008;15:387–96.

  • 26.

    Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 27.

    Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008;24:713–4.

  • 28.

    Maillet N, Collet G, Vannier T, Lavenier D, Peterlongo P. COMMET: comparing and combining multiple metagenomic datasets. IEEE Int Conf Bioinform Biomed. 2014:94–8.

  • 29.

    Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015;31:1674–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 30.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.

    Google Scholar 

  • 34.

    Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R. Pfam: multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Res. 1998;26:320–2.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–402.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.

    Article  CAS  Google Scholar 

  • 37.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 2004;5:113.

    Article  CAS  Google Scholar 

  • 39.

    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PloS one. 2010;5:e9490.

  • 40.

    Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature. 2013;499:431–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 41.

    Olson DK, Yoshizawa S, Boeuf D, Iwasaki W, DeLong EF. Proteorhodopsin variability and distribution in the North Pacific Subtropical Gyre. ISME J. 2018;12:1047–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Boeuf D, Audic S, Brillet-Guéguen L, Caron C, Jeanthon C. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution. Database. 2015;2015:bav080.

  • 43.

    Boeuf D, Lami R, Cunnington E, Jeanthon C. Summer abundance and distribution of proteorhodopsin genes in the Western Arctic Ocean. Front Microbiol. 2016;7:1584.

    PubMed  PubMed Central  Article  Google Scholar 

  • 44.

    Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res.2002;30:3059–66.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 47.

    Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics. 2011;27:1009–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Lambert S, Lozano J-C, Bouget F-Y, Galand PE. Seasonal marine microorganisms change neighbors under remarkable weather conditions. Environ Microbiol. 2021; in press.

  • 49.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 51.

    Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.

    PubMed  Article  PubMed Central  Google Scholar 

  • 52.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, et al. Package ‘vegan’. Community Ecol Package, Version 2019;2:5–6.

    Google Scholar 

  • 53.

    Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 54.

    Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–6.

  • 55.

    Rodrigues DF, Ivanova N, He Z, Huebner M, Zhou J, Tiedje JM. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC genomics. 2008;9:547.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 56.

    Zhu W, Lan Y, Lou X, Han N, Ran T, Xu L, et al. Isolation of proteorhodopsin-bearing bacterium JL-3 from fresh water and characterization of the proteorhodopsin. FEMS Microbiol Lett. 2013;344:10–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 57.

    Petrovskaya L, Balashov S, Lukashev E, Imasheva E, Gushchin IY, Dioumaev A, et al. ESR—A retinal protein with unusual properties from Exiguobacterium sibiricum. Biochemistry. 2015;80:688–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    Gushchin I, Chervakov P, Kuzmichev P, Popov AN, Round E, Borshchevskiy V, et al. Structural insights into the proton pumping by unusual proteorhodopsin from nonmarine bacteria. Proc Natl Acad Sci USA. 2013;110:12631–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 59.

    Béja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF. Proteorhodopsin phototrophy in the ocean. Nature. 2001;411:786–9.

    PubMed  Article  PubMed Central  Google Scholar 

  • 60.

    Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S. The Sorcerer II Global Ocean Sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol. 2007;5:e77.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 61.

    Sabehi G, Kirkup BC, Rozenberg M, Stambler N, Polz MF, Béja O. Adaptation and spectral tuning in divergent marine proteorhodopsins from the eastern Mediterranean and the Sargasso Seas. ISME J. 2007;1:48–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Murray AE, Preston CM, Massana R, Taylor LT, Blakis A, Wu K, et al. Seasonal and spatial variability of bacterial and archaeal assemblages in the coastal waters near Anvers Island, Antarctica. Appl Environ Microbiol. 1998;64:2585–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 63.

    Pernthaler A, Preston CM, Pernthaler J, DeLong EF, Amann R. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine Bacteria and Archaea. Appl Environ Microbiol. 2002;68:661–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Herfort L, Schouten S, Abbas B, Veldhuis MJ, Coolen MJ, Wuchter C, et al. Variations in spatial and temporal distribution of Archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol. 2007;62:242–57.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 65.

    Murray AE, Blakis A, Massana R, Strawzewski S, Passow U, Alldredge A. A time series assessment of plaktonic archaeal variability in the Santa Barbara Channel. Aquat Micro Ecol. 1999;20:129–45.

    Article  Google Scholar 


  • Source: Ecology - nature.com

    Mismatch of thermal optima between performance measures, life stages and species of spiny lobster

    Field geology at a distance