in

Shelf humic substances as carriers for basin-scale iron transport in the North Pacific

  • 1.

    Wu, J., Boyle, E., Sunda, W. & Wen, L. S. Soluble and colloidal iron in the oligotrophic North Atlantic and North. Pacific. Science 293, 847–849 (2001).

  • 2.

    Kuma, K., Nishioka, J. & Matsunaga, K. Controls on Iron(III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnol. Oceanogr. 41, 396–407 (1996).

  • 3.

    Tagliabue, A. et al. The integral role of iron in ocean biogeochemistry. Nature 543, 52–59 (2017).

  • 4.

    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

  • 5.

    Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014).

  • 6.

    Johnson, K. S., Gordon, R. M. & Coale, K. H. What controls dissolved iron concentrations in the world ocean? Mar. Chem. 57, 137–161 (1997).

  • 7.

    Duce, R. A. & Tindale, N. W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36, 1715–1726 (1991).

  • 8.

    Hassler, C. S., van den Berg, C. M. G. & Boyd, P. W. Toward a Regional Classification to Provide a More Inclusive Examination of the Ocean Biogeochemistry of Iron-Binding Ligands. Front. Mar. Sci. 4, 19 (2017).

    • Article
    • Google Scholar
  • 9.

    Gledhill, M. & Buck, K. N. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69.

  • 10.

    Benner, R. Loose ligands and available iron in the ocean. Proc. Natl. Acad. Sci. USA 108, 893–894 (2011).

  • 11.

    Boiteau, R. M. et al. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Proc. Natl. Acad. Sci. USA 113, 14237–14242 (2016).

  • 12.

    Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P. Humic substances in soil, sediment and water: Geochemistry, isolation and characterization (John Wiley & Sons, New York, 1985).

  • 13.

    Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation – emission matrix spectroscopy. Mar. Chem. 51, 325–346 (1996).

  • 14.

    Yamashita, Y. & Tanoue, E. Chemical characterization of protein-like fluorophores in DOM in relation to aromatic amino acids. Mar. Chem. 82, 255–271 (2003).

  • 15.

    Coble, P. G., Lead, J., Baker, A. Reynolds, D. M. & Spencer, R. G. M. Aquatic Organic Matter Fluorescence (Cambridge University Press, New York, 2014).

  • 16.

    Jaffé, R., Cawley, K. M. & Yamashita, Y. In Advances in the Physicochemical Characterization of Dissolved Organic Matter: Impact on Natural and Engineered Systems (ed. Rosario-Ortiz, F.) 27–73 (American Chemical Society, 2014).

  • 17.

    Boyd, P. W., Ibisanmi, E., Sander, S., Hunter, K. A. & Jackson, G. A. Remineralization of upper ocean particles: implications for iron biogeochemistry. Limnol. Oceanogr. 55, 1271–1288 (2010).

  • 18.

    Yamashita, Y. & Tanoue, E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nat. Geosci. 1, 579–582 (2008).

  • 19.

    Jørgensen, L. et al. Global trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar. Chem. 126, 139–148 (2011).

  • 20.

    Catalá, T. S. et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nat. Commun. 6, 5986 (2015).

  • 21.

    Tani, H. et al. Iron(III) hydroxide solubility and humic-type fluorescent organic matter in the deep water column of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. Part I 50, 1063–1078 (2003).

  • 22.

    Takata, H. et al. Comparative vertical distributions of iron in the Japan Sea, the Bering Sea, and the western North Pacific Ocean. J. Geophys. Res. 110, C07004 (2005).

  • 23.

    Kitayama, S. et al. Controls on iron distributions in the deep water column of the North Pacific Ocean: Iron(III) hydroxide solubility and marine humic-type dissolved organic matter. J. Geophys. Res. 114, C08019 (2009).

  • 24.

    Yamashita, Y. et al. Fluorescence characteristics of dissolved organic matter in the deep waters of the Okhotsk Sea and the northwestern North Pacific Ocean. Deep-Sea Res. Part II 57, 1478–1485 (2010).

  • 25.

    Misumi, K. et al. Humic substances may control dissolved iron distributions in the global ocean: Implications from numerical simulations. Glob. Biogeochem. Cycle 27, 450–462 (2013).

  • 26.

    Nishioka, J. et al. Iron supply to the western subarctic Pacific: Importance of iron export from the Sea of Okhotsk. J. Geophys. Res. 112, C10012 (2007).

  • 27.

    Nishioka, J. et al. Intensive mixing along an island chain controls oceanic biogeochemical cycles. Glob. Biogeochem. Cycle 27, 920–929 (2013).

  • 28.

    Nakamura, T., Awaji, T., Hatayama, T., Akitomo, K. & Takizawa, T. Tidal exchange through the Kuril Straits. J. Phys. Oceanogr. 30, 1622–1644 (2000).

  • 29.

    Yamamoto, M., Watanabe, S., Tsunogai, S. & Wakatsuchi, M. Effects of sea ice formation and diapycnal mixing on the Okhotsk Sea intermediate water clarified with oxygen isotopes. Deep-Sea. Res. Part I 49, 1165–1174 (2002).

  • 30.

    Yamamoto-Kawai, M., Watanabe, S., Tsunogai, S. & Wakatsuchi, M. Chlorofluorocarbons in the Sea of Okhotsk: Ventilation of the intermediate water. J. Geophys. Res. 109, C09S11 (2004).

  • 31.

    Yasuda, I. et al. Hydrographic structure and transport of the Oyashio south of Hokkaido and the formation of North Pacific Intermediate Water. J. Geophys. Res. 106, 6931–6942 (2001).

  • 32.

    Ohshima, K. I., Wakatsuchi, M., Fukamachi, Y. & Mizuta, G. Near-surface circulation and tidal currents of the Okhotsk Sea observed with satellite-tracked drifters. J. Geophys. Res. 107, 3195 (2002).

  • 33.

    Mopper, K. et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature 353, 60–62 (1991).

  • 34.

    Omori, Y., Hama, T., Ishii, M. & Saito, S. Vertical change in the composition of marine humic-like fluorescent dissolved organic matter in the subtropical western North Pacific and its relation to photoreactivity. Mar. Chem. 124, 38–47 (2011).

  • 35.

    Helms, J. R. et al. Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence. Mar. Chem. 155, 81–91 (2013).

  • 36.

    Hayase, K. & Shinozuka, N. Vertical distribution of fluorescent organic matter along with AOU and nutrients in the equatorial Central Pacific. Mar. Chem. 48, 283–290 (1995).

  • 37.

    Yamashita, Y., Tsukasaki, A., Nishida, T. & Tanoue, E. Vertical and horizontal distribution of fluorescent dissolved organic matter in the Southern Ocean. Mar. Chem. 106, 498–509 (2007).

  • 38.

    Wong, C. S., Matear, J., Freeland, H. J., Whitney, F. A. & Bychkov, A. S. WOCE line P1W in the Sea of Okhotsk. 2. CFCs and the formation rate of intermediate water. J. Geophys. Res. 103, 15625–15642 (1998).

  • 39.

    Itoh, M., Ohshima, K. I. & Wakatsuchi, M. Distribution and formation of Okhotsk Sea Intermediate Water: An analysis of isopycnal climatological data. J. Geophs. Res. 108, 3258 (2003).

    • Article
    • Google Scholar
  • 40.

    Warner, M., Bullister, J. L., Wisegarver, D. P., Gammon, R. H. & Weiss, R. F. Basin -wide distributions of chlorofluorocarbons CFC-11 and CFC-12 in the North Pacific: 1985-1989. J. Geophys. Res. 101, 20525–20542 (1996).

  • 41.

    Takata, H. et al. Spatial variability of iron in the surface water of the northwestern North Pacific Ocean. Mar. Chem. 86, 139–157 (2004).

  • 42.

    Heller, M. I., Gaiero, D. M. & Croot, P. L. Basin scale survey of marine humic fluorescence in the Atlantic: Relationship to iron solubility and H2O2. Glob. Biogeochem. Cycle 27, 88–100 (2013).

  • 43.

    Lohan, M. C. & Bruland, K. W. Elevated Fe(II) and dissolved Fe in hypoxic shelf waters off Oregon and Washington: An enhanced source of iron to coastal upwelling regimes. Environ. Sci. Technol. 42, 6462–6468 (2008).

  • 44.

    Jones, M. E., Beckler, J. S. & Taillefert, M. The flux of soluble organic-iron(III) complexes from sediments represents a source of stable iron(III) to estuarine waters and to the continental shelf. Limnol. Oceanogr. 56, 1811–1823 (2011).

  • 45.

    Nishioka, J. et al. Size fractionated iron distributions and iron-limitation processes in the subarctic NW Pacific. Geophys. Res. Lett. 30, 1730 (2003).

  • 46.

    Nishioka, J. et al. Quantitative evaluation of iron transport processes in the Sea of Okhotsk. Prog. Oceanogr. 126, 180–193 (2014).

  • 47.

    Fitzsimmons, J. N. et al. Iron persistence in a distal hydrothermal plume supported by dissolved–particulate exchange. Nat. Geosci. 10, 195–201 (2017).

  • 48.

    Fitzsimmons, J. N. et al. Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Res. Part II 116, 130–151 (2015).

  • 49.

    Hioki, N. et al. Laterally spreading iron, humic-like dissolved organic matter and nutrients in cold, dense subsurface water of the Arctic Ocean. Sci. Rep. 4, 6765 (2014).

    • Google Scholar
  • 50.

    Kondo, Y. et al. Transport of trace metals (Mn, Fe, Ni, Zn and Cd) in the western Arctic Ocean (Chukchi Sea and Canada Basin) in late summer 2012. Deep-Sea Res. Part I 116, 236–252 (2016).

  • 51.

    Chen, M. et al. Production of fluorescent dissolved organic matter in Arctic Ocean sediments. Sci. Rep. 6, 39213 (2016).

  • 52.

    Nishioka, J., Ono, T., Saito, H., Sakaoka, K. & Yoshimura, T. Oceanic iron supply mechanisms which support the spring diatom bloom in the Oyashio region, western subarctic Pacific. J. Geophys. Res. 116, C0202 (2011).

    • Google Scholar
  • 53.

    Weiss, R. F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17, 721–735 (1970).

    • CAS
    • Google Scholar
  • 54.

    Obata, H., Karatani, H. & Nakayama, E. Automated determination of iron in seawater by chelating resin concentration and chemiluminescence detection. Anal. Chem. 65, 1524–1528 (1993).

  • 55.

    Johnson, K. S. et al. Developing standards for dissolved iron in seawater. EOS 88, 131–132 (2007).

  • 56.

    Lawaetz, A. J. & Stedmon, C. A. Fluorescence intensity calibration using the Raman scatter peak of water. Appl. Spectrosc. 63, 936–940 (2009).

  • 57.

    Cory, R. M., Miller, M. P., McKnight, D. M., Guerard, J. J. & Miller, P. L. Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol. Oceanogr.: Methods 8, 67–78 (2010).

    • CAS
    • Google Scholar
  • 58.

    Tanaka, K., Kuma, K., Hamasaki, K. & Yamashita, Y. Accumulation of humic-like fluorescent dissolved organic matter in the Japan Sea. Sci. Rep. 4, 5292 (2014).

  • 59.

    Schlitzer, R. Ocean Data View, http://odv.awi.de (2018).


  • Source: Ecology - nature.com

    How plants protect themselves from sun damage

    Lighting recycling in Australia: A complete guide to recycling lighting waste