in

Silicon addition improves plant productivity and soil nutrient availability without changing the grass:legume ratio response to N fertilization

  • 1.

    Craine, J. M., Froehle, J., Tilman, D. G., Wedin, D. A. & Chapin, F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285. https://doi.org/10.1034/j.1600-0706.2001.930210.x (2001).

    Article  Google Scholar 

  • 2.

    Song, M. H. et al. Different responses to availability and form of nitrogen in space and time explain species coexistence in an alpine meadow community after release from grazing. Glob. Change Biol. 18, 3100–3111 (2012).

    ADS  Article  Google Scholar 

  • 3.

    Zhou, X. M. Alpine Kobresia meadows in China 51–62 (Science Press, Beijing, 2001).

    Google Scholar 

  • 4.

    Fujita, Y., Robroek, B. J. M., de Ruiter, P. C., Heil, G. W. & Wassen, M. J. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos 119, 1665–1673. https://doi.org/10.1111/j.1600-0706.2010.18427.x (2010).

    CAS  Article  Google Scholar 

  • 5.

    Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 43–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x (2004).

    Article  Google Scholar 

  • 6.

    Xu, D. H. et al. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. CATENA 169, 80–89. https://doi.org/10.1016/j.catena.2018.05.017 (2018).

    CAS  Article  Google Scholar 

  • 7.

    Dhamala, N. R., Rasmussen, J., Carlsson, G., Søegaard, K. & Eriksen, J. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant Soil 413, 217–230. https://doi.org/10.1007/s11104-016-3088-6 (2017).

    CAS  Article  Google Scholar 

  • 8.

    Schaller, J. & Struyf, E. Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709, 201–212. https://doi.org/10.1007/s10750-013-1449-1 (2013).

    CAS  Article  Google Scholar 

  • 9.

    Schaller, J., Hines, J., Brackhage, C., Baucker, E. & Gessner, M. O. Silica decouples fungal growth and litter decomposition without changing responses to climate warming and N enrichment. Ecology 95, 3181–3189 (2014).

    Article  Google Scholar 

  • 10.

    Marxen, A. et al. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398, 153–163. https://doi.org/10.1007/s11104-015-2645-8 (2016).

    CAS  Article  Google Scholar 

  • 11.

    Sommer, M., Kaczoek, D., Kuzyakov, Y. & Breuer, J. Silicon pools and fluxes in soils and landscapes—a review. J. Plant Nutr. Soil Sci. 169, 310–329 (2006).

    CAS  Article  Google Scholar 

  • 12.

    Bruning, B. & Rozema, J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environ. Exp. Bot. 92, 134–143. https://doi.org/10.1016/j.envexpbot.2012.09.001 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Detmann, K. C. et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 196, 752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 14.

    Xu, D. H. et al. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. AoB Plants 7, plv125. https://doi.org/10.1093/aobpla/plv125 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Neu, S. & Schaller, J. Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 7, 40829. https://doi.org/10.1038/srep40829 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 16.

    Schaller, J., Brackhage, C., Gessner, M. O., Bäker, E. & Dudel, E. G. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol. 14, 392–396. https://doi.org/10.1111/j.1438-8677.2011.00537.x (2012).

    CAS  Article  PubMed  Google Scholar 

  • 17.

    Schaller, J. et al. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems. Oecologia 182, 277–286. https://doi.org/10.1007/s00442-016-3647-9 (2016).

    ADS  Article  PubMed  Google Scholar 

  • 18.

    Johnson, S. N. et al. Silicon-induced root nodulation and synthesis of essential amino acids in a legume is associated with higher herbivore abundance. Funct. Ecol. 31, 1903–1909. https://doi.org/10.1111/1365-2435.12893 (2017).

    Article  Google Scholar 

  • 19.

    Schaller, J., Hodson, M. J. & Struyf, E. Is relative Si/Ca availability crucial to the performance of grassland ecosystems?. Ecosphere 8, e01726. https://doi.org/10.1002/ecs2.1726 (2017).

    Article  Google Scholar 

  • 20.

    Schoelynck, J. et al. Silicon–vegetation interaction in multiple ecosystems: A review. J. Veg. Sci. 25, 301–313. https://doi.org/10.1111/jvs.12055 (2014).

    Article  Google Scholar 

  • 21.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x (2002).

    Article  Google Scholar 

  • 22.

    Seyfferth, A. L. & Fendorf, S. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ. Sci. Technol. 46, 13176–13183. https://doi.org/10.1021/es3025337 (2012).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 23.

    Song, Z., Liu, H., Zhao, F. & Xu, C. Ecological stoichiometry of N:P:Si in China’s grasslands. Plant Soil 380, 165–179. https://doi.org/10.1007/s11104-014-2084-y (2014).

    CAS  Article  Google Scholar 

  • 24.

    Suter, M. et al. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Change Biol. 21, 2424–2438. https://doi.org/10.1111/gcb.12880 (2015).

    ADS  Article  Google Scholar 

  • 25.

    Han, Y. et al. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai–Tibetan Plateau. Geoderma 343, 263–268. https://doi.org/10.1016/j.geoderma.2018.12.050 (2019).

    CAS  Article  Google Scholar 

  • 26.

    Fu, G. & Shen, Z. X. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. 114, 99–104. https://doi.org/10.1016/j.apsoil.2017.03.008 (2017).

    Article  Google Scholar 

  • 27.

    Sillen, W. M. A. & Dieleman, W. I. J. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: A meta-analysis. Biogeosciences 9, 2247–2258 (2012).

    ADS  CAS  Article  Google Scholar 

  • 28.

    Malhi, S. S. et al. Total and light fraction organic C in a thin Black Chernozemic grassland soil as affected by 27 annual applications of six rates of fertilizer N. Nutr. Cycl. Agroecosyst. 66, 33–41. https://doi.org/10.1023/a:1023376905096 (2003).

    CAS  Article  Google Scholar 

  • 29.

    Zhao, Y. et al. Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecol. Res. 31, 117–123. https://doi.org/10.1007/s11284-015-1320-0 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Ji, Z. et al. Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass Forage Sci. 73, 482–492. https://doi.org/10.1111/gfs.12316 (2018).

    CAS  Article  Google Scholar 

  • 31.

    Reithmaier, G. M. S., Knorr, K. H., Arnhold, S., Planer-Friedrich, B. & Schaller, J. Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci. Rep. https://doi.org/10.1038/s41598-017-09130-3 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 32.

    Lu, M. et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytol. 189, 1040–1050. https://doi.org/10.1111/j.1469-8137.2010.03563.x (2011).

    CAS  Article  PubMed  Google Scholar 

  • 33.

    Song, Z. et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change. Earth Sci. Rev. 185, 463–475. https://doi.org/10.1016/j.earscirev.2018.06.020 (2018).

    ADS  CAS  Article  Google Scholar 

  • 34.

    Gao, W. L. et al. Effects of nitrogen addition on soil inorganic N content and soil N mineralization of a cold-temperate coniferous forest in Great Xing’an Mountains. Acta Ecol. Sin. 35, 130–136. https://doi.org/10.1016/j.chnaes.2015.07.003 (2015).

    CAS  Article  Google Scholar 

  • 35.

    Finzi, A. C., Canham, C. D. & Van Breemen, N. Canopy tree–soil interactions within temperate forests: Species effects on pH and cations. Ecol. Appl. 8, 447. https://doi.org/10.2307/2641083 (1998).

    Article  Google Scholar 

  • 36.

    Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 024019. https://doi.org/10.1088/1748-9326/10/2/024019 (2015).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Rothwell, J. J., Futter, M. & Nand Dise, N. B. A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests. Environ. Pollut. 156, 544–552. https://doi.org/10.1016/j.envpol.2008.01.007 (2008).

    CAS  Article  PubMed  Google Scholar 

  • 38.

    Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J. & Nikolic, M. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419, 447–455. https://doi.org/10.1007/s11104-017-3364-0 (2017).

    CAS  Article  Google Scholar 

  • 39.

    Schaller, J. et al. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9, 449. https://doi.org/10.1038/s41598-018-37104-6 (2019).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 40.

    Dawar, K., Zaman, M., Rowarth, J. S., Blennerhassett, J. & Turnbull, M. H. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 144, 41–50 (2011).

    CAS  Article  Google Scholar 

  • 41.

    Zhang, J. et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Sci. Total Environ. 625, 440–448. https://doi.org/10.1016/j.scitotenv.2017.12.292 (2018).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 42.

    Gao, Y., Ma, X. & Cooper, D. J. Short-term effect of nitrogen addition on nitric oxide emissions from an alpine meadow in the Tibetan plateau. Environ. Sci. Pollut. Res. 23, 12474–12479. https://doi.org/10.1007/s11356-016-6763-5 (2016).

    CAS  Article  Google Scholar 

  • 43.

    Song, L., Tian, P., Zhang, J. & Jin, G. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Sci. Total Environ. 609, 1303–1311. https://doi.org/10.1016/j.scitotenv.2017.08.017 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 44.

    Tian, L. et al. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci. Total Environ. 607–608, 855–864. https://doi.org/10.1016/j.scitotenv.2017.07.080 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 45.

    Ma, J. F. & Takahashi, E. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 133, 151–155. https://doi.org/10.1007/BF00009187 (1991).

    CAS  Article  Google Scholar 

  • 46.

    Xu, X. L. et al. Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ15N. J. Plant Nutr. Soil Sci. 177, 378–387. https://doi.org/10.1002/jpln.201200061 (2014).

    CAS  Article  Google Scholar 

  • 47.

    Ma, J. F. et al. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol. 136, 3284–3289. https://doi.org/10.1104/pp.104.047365 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 48.

    Yang, B. J., Qiao, N., Xu, X. L. & Ouyang, H. Symbiotic nitrogen fixation by legumes in two Chinese grasslands estimated by 15N dilution technique. Nutr. Cycl. Agroecosyst. 91, 91–98. https://doi.org/10.1007/s10705-011-9448-y (2011).

    CAS  Article  Google Scholar 

  • 49.

    Li, Z. C. et al. Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands. J. Integr. Agric. 17, 2182–2195. https://doi.org/10.1016/S2095-3119(18)62018-0 (2018).

    CAS  Article  Google Scholar 

  • 50.

    Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 155, 155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x (2009).

    CAS  Article  Google Scholar 

  • 51.

    Mali, M. & Aery, N. C. Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J. Plant Nutr. Soil Sci. 171, 835–840. https://doi.org/10.1002/jpln.200700362 (2008).

    CAS  Article  Google Scholar 

  • 52.

    Liu, Z. P., Shao, M. A. & Wang, Y. Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire loess plateau region of China. Geoderma 197–198, 67–78. https://doi.org/10.1016/j.geoderma.2012.12.011 (2013).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Xu, B. C. et al. N:P ratio of the grass Bothriochloa ischaemum mixed with the legume Lespedeza davurica under varying water and fertilizer supplies. Plant Soil 400, 67–79. https://doi.org/10.1007/s11104-015-2714-z (2016).

    CAS  Article  Google Scholar 


  • Source: Ecology - nature.com

    Researchers find benefits of solar photovoltaics outweigh costs

    IdeaStream 2020 goes virtual